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Abstract PID (proportional-integral-derivative) control is recognized to be the most widely and

successfully employed control strategy by far. However, there are limited theoretical investigations

explaining the rationale why PID can work so well when dealing with nonlinear uncertain systems.

This paper continues the previous researches towards establishing a theoretical foundation of PID

control, by studying the regulation problem of PID control for nonaffine uncertain nonlinear stochastic

systems. To be specific, a three dimensional parameter set will be constructed explicitly based on

some prior knowledge on bounds of partial derivatives of both the drift and diffusion terms. It will be

shown that the closed-loop control system will achieve exponential stability in the mean square sense

under PID control, whenever the controller parameters are chosen from the constructed parameter set.

Moreover, similar results can also be obtained for PD (PI) control in some special cases. A numerical

example will be provided to illustrate the theoretical results.

Keywords Asymptotically regulation, global stability, nonaffine PID control, stochastic systems,

uncertain structure.

1 Introduction

It is well-known that PID (proportional-integral-derivative) control is the most widely em-
ployed feedback strategy by far, and has shown its impact on various systems, ranging from
process control to flight control (see, e.g., [1–3]). PID controller is believed to be “bread and
butter” of control enigneering[4]. The classical PID controller, which has an easy-to-use linear
structure consisting of three terms constructed based on the real-time control error, is a typical
data-driven control strategy. It has the ability to eliminate steady state offsets through the
integral action and to anticipate the near future behavior via the derivative action. Despite of
the remarkable progresses in modern control theory over the past 60 years, the classical PID
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controller still plays a dominating role in control practice (see, e.g., [5]). This largely attributes
to the fact that the Newton’s second law still plays a fundamental role in modeling mechanical
systems, and that the PID control has two-sided large scale robustness with respect to system
uncertain structure and controller parameter selection[6].

Ever since the emergence of PID controller in the early 20th century, extensively academic
and industrial efforts have been made in improving the effectiveness of PID control loops and,
as a result, a large amount of tuning methods continue to emerge (see, e.g., [7, 8]). One may
naturally believe that PID control is matured in both theory and practice. However, the de
facto situation is that poorly tuned PID controlled loops are quite common in practice (see,
e.g., [9–11]), and almost all the existing tuning methods are case dependent and heavily rely on
experience or experiment or both, which might lead to unsatisfactory performance. Moreover,
practical control systems are bound to be nonlinear with uncertainties and disturbances, while
most of the existing analytic results on PID are conducted for linear systems, and only a few
explicitly for uncertain nonlinear systems (see, e.g., [12–14]). Therefore, it can be said that
“PID controllers remain poorly understood”[15], and a comprehensive understanding towards
PID may improve its widespread practice and so contribute to better product quality[1].

Thus, it is necessary to make efforts towards establishing the theoretical foundation on PID
control for nonlinear uncertain systems. In order to figure out the rationale why PID can make
such amazing achievements, nonlinearity and uncertainty must be taken into consideration.
Moreover, efforts must be taken on analyzing the limits of PID control in a general framework.
In view of these facts, some rigorous mathematical investigations have been made on a class of
second order systems described by the celebrated Newton’s second law (see, e.g., [16–20]). For
instance, [16, 18] show that global stability can be achieved by PID controllers for a class of
nonlinear uncertain systems without input channel uncertainty. [19] proves that similar results
can be obtained for PID controlled stochastic systems with structural uncertainty consisting of
dynamic uncertainty, input channel uncertainty and diffusion uncertainty. Nonetheless, there
is still a long way to go to fill up the gap between theory and practice of PID. On the one
hand, results in [19] are conducted under restrictive conditions where the input channel must
be described by positive definite constant matrices with known lower and upper bounds. On the
other hand, numerous practical systems cannot be characterized by affine nonlinear forms since
the changing rate of system states may not be linearly related to control inputs, such as glucose
control system[21], pendulum control system[22], flight control system[23], etc. Nevertheless,
few theoretical results can be found on PID controlled nonaffine nonlinear systems, even for
deterministic systems. To the best of authors’ knowledge, [20] provides the first rigorous math-
ematical analysis on global performance of PID controlled MIMO (multi-input multi-output)
nonaffine systems without external disturbances.

In this paper, we will consider the global regulation problem for a class of nonaffine stochas-
tic systems, which is an extension of the deterministic nonlinear uncertain systems considered
in [20]. The main result of this paper will also significantly weaken the assumptions given in our
previous results[19]. To be specific, a three dimensional unbounded open set for the controller
parameters could be constructed, from which various PID controllers could be designed to con-
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trol the uncertain stochastic systems globally with the regulation errors converge exponentially
in the mean square sense. The constructed PID parameter set is based on some prior knowl-
edge on the upper bounds of partial derivatives of both the drift and diffusion terms. Moreover,
the control input is no longer needed to be linearly related to the derivative of system states,
and only the lower bound of the input channel is needed. A design formula of PD controller
will be also provided for a class of nonaffine stochastic systems with relative degree two in the
cases where more restrictions on the system dynamics are satisfied. Similar results can further
be obtained on designing PI controller for a class of nonaffine stochastic systems with relative
degree one.

The remainder of this paper is organized as follows. Some backgrounds and the problem
formulation are provided in Section 2. Main results are placed in Section 3 together with their
mathematical proofs given in Section 4. Section 5 will provide a numerical simulation example.
Some concluding remarks will also be given at the end of this paper.

2 Backgrounds and Problem Formulation

2.1 Notations and Definitions

First, we introduce some notations that will be used throughout this paper:
Denote R

+ as the set of all positive real numbers, moreover, denote

R
n+ = {(x1, x2, · · · , xn)|xi > 0, i = 1, 2, · · · , n}.

Denote Ck(Rn, Rm) as the space of functions from R
n to R

m with k-times continuous partial
derivatives. For a given vector x ∈ R

n, ‖x‖ refers to its Euclidean norm. For a given matrix
Q ∈ R

m×n, ‖Q‖ refers to the corresponding induced norm (i.e., ‖Q‖ = supx∈Rn,‖x‖=1 ‖Qx‖).
For a given matrix Q ∈ R

n×n, tr(Q) denotes its trace. For a given vector-valued function
Φ(·) ∈ C1(Rn, Rn), the Jacobian matrix of the mapping Φ is defined as follows:

∂Φ
∂x

=

⎡
⎢⎢⎢⎣

∂φ1
∂x1

· · · ∂φ1
∂xn

...
. . .

...
∂φn

∂x1
. . . ∂φn

∂xn

⎤
⎥⎥⎥⎦ .

For a given function f(·) ∈ C2(Rn, R), the Hessian matrix of f is defined by

∂2f

∂x2
=

⎡
⎢⎢⎢⎣

∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂x2
n

⎤
⎥⎥⎥⎦ .

Next, consider the following stochastic differential equation (SDE):

dx(t) = f(x(t))dt + σ(x(t))dw(t),

x(0) = x0 ∈ R
n, (1)
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where x(t) is the state, w(t) is a one-dimensional standard Brownian motion, and f(·) ∈
C1(Rn, Rn), σ(·) ∈ C1(Rn, Rn) are functions satisfying f(0) = σ(0) = 0.

Definition 2.1 Given a function V (x, t) ∈ C2(Rn ×R
+, R) associated with the SDE (1).

The differential operator L acting on V is defined by

LV (x, t) =
∂V

∂t
+

∂V

∂x
f(x) +

1
2
tr
{
σ(x)τ ∂2V

∂x2
σ(x)

}
.

2.2 Problem Formulation

Consider the following nonaffine stochastic control systems with relative degree two:
⎧
⎨
⎩

dx1(t) = x2(t)dt,

dx2(t) = f(x1(t), x2(t), u(t))dt + σ(x1(t), x2(t))dw(t),
(2)

where x1(t), x2(t) ∈ R
n are state variables, u(t) ∈ R

n is the control input, and where f(·) ∈
C1(R3n, Rn) and σ(·) ∈ C1(R2n, Rn) are unknown nonlinear functions of their respective vari-
ables, and w(t) is a one-dimensional standard Brownian Motion.

Remark 2.2 The above model describes a class of nonlinear systems with uncertain
system dynamics and external disturbances, and includes a large amount of practical mechanical
systems modeled by the celebrated Newton’s second law, e.g., inverted pendulum, helicopter
dynamics[23], etc.

In this paper, we focus on the classical PID controller:

u(t) = ki

∫ t

0

e(s)ds + kpe(t) + kdė(t), e(t) = r∗ − x1(t), (3)

where e(t) ∈ R
n is the control error, r∗ ∈ R

n is the reference signal, and show that the classical
PID controller has the ability to globally stabilize and to regulate the nonlinear uncertain
stochastic system (2), under some suitable conditions on the nonlinear functions f(·) and σ(·).

3 Main Results

3.1 PID Control

Following a similar framework as in the investigation of PID control for nonaffine determin-
istic systems in [20], we assume that the uncertain drift function f(·) belongs to the following
function class:

Assumption 3.1 (Function Space for Uncertain Drift Function)

FL1,L2,b =
{

f ∈ C1
(
R

3n, Rn
) ∣∣∣∣
∥∥∥∥

∂f

∂x1

∥∥∥∥ ≤ L1,

∥∥∥∥
∂f

∂x2

∥∥∥∥ ≤ L2,
∂f

∂u
≥ bIn

}
,

where L1, L2, b are positive constants.

Remark 3.1 The three constants L1, L2 and b will be used to describe the system
uncertainty quantitatively, which play a key role in designing the PID parameters, as will be
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shown shortly. Moreover, we remark that the boundedness of the partial derivatives ∂f
∂xi

(i =
1, 2), appears to be necessary in general to get global control results, since the PID control is a
linear output feedback controller, see Proposition 1 in [24].

We further assume that the uncertain diffusion function σ(·) belongs to the following function
class:

Assumption 3.2 (Function Space for Uncertain Diffusion Function)

GN1,N2,r∗ =
{

σ ∈ C1
(
R

2n, Rn
) ∣∣∣∣
∥∥∥∥

∂σ

∂x1

∥∥∥∥ ≤ N1,

∥∥∥∥
∂σ

∂x2

∥∥∥∥ ≤ N2, σ(r∗, 0) = 0
}

,

where N1 and N2 are positive constants and r∗ ∈ R
n is the reference signal.

Remark 3.2 From the definition of GN1,N2,r∗ , one can see that the diffusion function is
required to be vanished at the point (r∗, 0). The following proposition explains the necessity of
this requirement.

Proposition 3.3 Consider the following SDE with PID control:
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx1(t) = x2(t)dt,

dx2(t) = f(x1(t), x2(t), u(t))dt + σ(x1(t), x2(t))dw(t),

u(t) = ki

∫ t

0

e(s)ds + kpe(t) + kdė(t), e(t) = r∗ − x1(t),

(4)

where (x1(t), x2(t)) ∈ R
2 are the system states, f(·) and σ(·) are Lipschitz functions and r∗ is

a constant setpoint. Suppose that σ(r∗, 0) �= 0, then for any given triple (kp, ki, kd) and for all
initial state (x1(0), x2(0)) ∈ R

2, the closed-loop system (4) cannot achieve the following control
performance

lim
t→∞ E(x1(t) − r∗)2 = 0 and lim

t→∞ Ex2
2(t) = 0,

exponentially, where E(·) denotes the mathematical expectation of a random variable.

The proof of Proposition 3.3 will be provided in the Appendix.
In this paper, we will show that the control error can converge to zero in mean square

sense with PID control for all initial conditions x1(0), x2(0) ∈ R
n, under above assumptions on

the nonlinear functions f(·) and σ(·). Furthermore, a three dimensional parameter set can be
constructed explicitly as long as some prior information about the bounds of partial derivatives
of both uncertain functions f(·) and σ(·) are available.

We now introduce the PID parameter set to be used and analyzed as follows:

Ωpid =
{
(kp, ki, kd) ∈ R

3+
∣∣ k2

pb > 2kikdb + kdN
2
1 + k, k2

db > kp + kdN
2
2 + k

}
, (5)

where k = (L1 + L2)(kp + kd).

Remark 3.4 Ωpid is an open and unbounded set in R
3, which means that the selection

of controller parameters is quite flexible. In fact, for any given ki > 0, it can be shown that
(kp, ki, kd) ∈ Ωpid, as long as kp = kd ≥ 2ki + 1

b [2(L1 + L2) + N2
1 + N2

2 + 1]. Moreover, the
parameter set Ωpid is a semi-cone, that is, (αkp, αki, αkd) ∈ Ωpid, ∀α ≥ 1 whenever (kp, ki, kd) ∈
Ωpid.
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Theorem 3.5 Consider the PID controlled stochastic system (2)–(3) with unknown func-
tions satisfying Assumption 3.1 and Assumption 3.2. Then, whenever the PID parameters
are chosen from Ωpid, i.e., (kp, ki, kd) ∈ Ωpid, the closed-loop control system will achieve the
following desired performance

lim
t→∞ E‖x1(t) − r∗‖2 = 0, lim

t→∞ E‖x2(t)‖2 = 0,

exponentially, for any initial states x1(0), x2(0) ∈ R
n.

Remark 3.6 Theorem 3.5 provides a wide range of “safe” controller parameters to guar-
antee the global stability of the control systems, and demonstrates that the PID control has
large scale robustness with respect to the system uncertainties and to the selection of the
controller parameters. These results partially explain the rationale behind the widespread suc-
cessful applications of the PID control. Of course, it is meaningful to further optimize the PID
parameters within the constructed parameter set Ωpid to achieve better control performance.

Remark 3.7 First, we remark that if the control system (2) is not subject to random
disturbances, i.e., the diffusion term σ(·) ≡ 0, the PID parameter set Ωpid will be the same
as that given in Theorem 3.1 in [20]. Next, it can be verified that the range of parameter set
Ωpid will shrink as the positive constants L1, L2, N1, N2 increase (or b decreases). This shows
that when the size of the system uncertainty becomes larger, the range of “safe” controller
parameters will become smaller.

3.2 PD Control

For the system (2) without random disturbances, i.e., σ(x) = 0, it has been shown in [20]
that the integral term

∫ t

0
e(s)ds is not necessary for regulation, when the setpoint r∗ is an

equilibrium of the uncontrolled system, i.e., f(r∗, 0, 0) = 0. This fact inspires us to consider
the following function space:

Assumption 3.3 (Uncertain Function Space for Drift Function)

FL1,L2,b,r∗ =
{

f ∈ FL1,L2,b

∣∣ f(r∗, 0, 0) = 0
}
.

Based on the above assumption, we will further investigate the capability of the PD control:

u(t) = kpe(t) + kdė(t), (6)

where e(t) = r∗ − y(t) is the control error.
Define the following PD parameter set:

Ωpd =
{

(kp, kd) ∈ R
2+
∣∣ k2

pb > kdN
2
1 + k, k2

db > kp + kdN
2
2 + k

}
, (7)

where k = (L1 + L2)(kp + kd).

Remark 3.8 Ωpd is an open unbounded set in R
3. To be specific, take kp = kd = k, it

could be verified that (kp, kd) ∈ Ωpd as long as k > 1
b (2L1 + 2L2 + N2

1 + N2
2 + 1).

The following theorem will show that PD control is sufficient when (r∗, 0) is an equilibrium
of the uncontrolled system.
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Theorem 3.9 Consider the PD controlled stochastic system (2)–(6) with unknown func-
tions satisfying Assumption 3.2 and Assumption 3.3. Then, whenever the PD parameters are
chosen from Ωpd, i.e., (kp, kd) ∈ Ωpd, the closed-loop control system will achieve the following
desired performance:

lim
t→∞ E‖x1(t) − r∗‖2 = 0, lim

t→∞ E‖x2(t)‖2 = 0,

exponentially, for any initial states x1(0), x2(0) ∈ R
n.

3.3 PI Control

In this subsection, we will further investigate the capability of PI control.
Consider the following class of stochastic systems:

dx(t) = f(x(t), u(t))dt + σ(x(t))dw(t), (8)

where x ∈ R
n is the observed state and u(t) ∈ R

n is the control input.
In this subsection, we will adopt the classical PI controller:

u(t) = ki

∫ t

0

e(s)ds + kpe(t), (9)

where e(t) = r∗ − x(t) is the control error, and r∗ ∈ R
n is the reference signal.

Next, we introduce the following assumption:

Assumption 3.4 (Uncertain Function Spaces) The nonlinear functions f and σ belong
to the following function spaces respectively:

FL,b =

{
f ∈ C1(R2n, Rn)

∣∣∣∣
∥∥∥∥

∂f

∂x

∥∥∥∥ ≤ L,
∂f

∂u
≥ bIn

}
,

GN,r∗ =

{
σ ∈ C1(Rn, Rn)

∣∣∣∣
∥∥∥∥

∂σ

∂x

∥∥∥∥ ≤ N, σ(r∗) = 0

}
,

where L, N and b are positive constants.

Define the following PI parameter set:

Ωpi =
{

(kp, ki) ∈ R
2+
∣∣ 2b(2bk2

p − 2ki − 2kpL − kpN
2) > L2

}
. (10)

Remark 3.10 For any fixed ki > 0, it can be verified that (kp, ki) ∈ Ωpi as long as
kp ≥ 4L+N2

2b + ki

L , since

2b(2bk2
p − 2ki − 2kpL − kpN

2) ≥ 2b(2kpL − 2ki) ≥ 8L2 + 2N2L > L2.

Consequently, Ωpi is an open unbounded set.

The following theorem will show that PI control is adequate when tackling with first order
systems.
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Theorem 3.11 Consider the PI controlled stochastic system (8)–(9), where the unknown
functions satisfy Assumption 3.4. Then, whenever the PI parameters are chosen from Ωpi, i.e.,
(kp, ki) ∈ Ωpi, the closed-loop control system will achieve the following desired performance:

lim
t→∞ E‖x(t) − r∗‖2 = 0,

exponentially, for any initial states x(0) ∈ R
n.

Remark 3.12 Theorem 3.11 (Theorem 3.5) shows that PI control (PID control) has the
ability to deal with first order (second order) nonaffine uncertain stochastic systems. We remark
that the extended PID discussed in [25] might be adopted to stabilize systems with a general
relative degree.

4 Proofs of the Main Results

4.1 Proof of Theorem 3.5

Proof First, suppose that f ∈ FL1,L2,b, σ ∈ GN1,N2,r∗ and PID parameters (kp, ki, kd) ∈
Ωpid. Define a map Φ : R

n → R
n as follows:

Φ(u) � f(r∗, 0, u), ∀u ∈ R
n.

Note that f ∈ FL1,L2,b, which means ∂Φ(u)
∂u = ∂f(r∗,0,u)

∂u ≥ bIn > 0. From Theorem A.1, we
know that Φ is a global diffeomorphism on R

n, which means the map Φ is both surjective and
injective. Thus, Φ has a unique zero point u∗, such that Φ(u∗) = 0.

Next, we introduce some notations. Denote

y0 =
∫ t

0

e(s)ds − u∗

ki
, y1 = e(t), y2 = ė(t),

and
g1(x1, x2, u) = −f(r∗ − x1,−x2, u + u∗), g2(x1, x2) = −σ(r∗ − x1,−x2),

then the PID controlled system (2)–(3) goes into
⎧
⎪⎪⎨
⎪⎪⎩

dy0 = y1dt,

dy1 = y2dt,

dy2 = g1(y1, y2, kiy0 + kpy1 + kdy2)dt + g2(y1, y2)dw(t).

(11)

Note that g1(0, 0, 0) = −f(r∗, 0, u∗) = 0 and g2(0, 0) = −σ(r∗, 0) = 0, which means
(0, 0, 0) ∈ R

3n is an equilibrium of the system (11). Recall that f ∈ FL1,L2,b and σ ∈ GN1,N2,r∗ ,

it is easy to verify that
∥∥∥∥

∂g1

∂x1

∥∥∥∥ ≤ L1,

∥∥∥∥
∂g1

∂x2

∥∥∥∥ ≤ L2,
∂g1

∂u
≤ −bIn < 0, ∀x1, x2, u ∈ R

n,

∥∥∥∥
∂g2

∂x1

∥∥∥∥ ≤ N1,

∥∥∥∥
∂g2

∂x2

∥∥∥∥ ≤ N2, ∀x1, x2 ∈ R
n.
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For simplicity, we denote ŷ
�
= kiy0 + kpy1 + kdy2 and we further point out that g1(y1, y2, ŷ) can

be expressed as follows:

g1(y1, y2, ŷ)

=[g1(y1, 0, 0)− g1(0, 0, 0)] + [g1(y1, y2, 0) − g1(y1, 0, 0)] + [g1(y1, y2, ŷ) − g1(y1, y2, 0)]

=
[ ∫ 1

0

∂g1(ty1, 0, 0)
∂x1

dt

]
y1 +

[ ∫ 1

0

∂g1(y1, ty2, 0)
∂x2

dt

]
y2 +

[∫ 1

0

∂g1

(
y1, y2, tŷ

)
∂u

dt

]
ŷ

�a1(y1)y1 + b1(y1, y2)y2 − γ(y0, y1, y2)ŷ,

where

a1(y1) =
∫ 1

0

∂g1(ty1, 0, 0)
∂x1

dt, b1(y1, y2) =
∫ 1

0

∂g1(y1, ty2, 0)
∂x2

dt

and

γ(y0, y1, y2) = −
∫ 1

0

∂g1

(
y1, y2, tŷ

)
∂u

dt.

From the above integral expressions, it is not difficult to obtain the following properties:

‖a1(y1)‖ ≤ L1, ‖b1(y1, y2)‖ ≤ L2, γ(y0, y1, y2) ≥ bIn > 0.

Similarly, g2(y1, y2) can be expressed as follows:

g2(y1, y2) = a2(y1)y1 + b2(y1, y2)y2,

where a2(y1) =
∫ 1

0
∂g2(ty1,0)

∂x1
dt and b2(y1, y2) =

∫ 1

0
∂g2(y1,ty2)

∂x2
dt. As a result, a2(y1) and b2(y1, y2)

also satisfy the following properties:

‖a2(y1)‖ ≤ N1, ‖b2(y1, y2)‖ ≤ N2.

From the expressions of the functions g1(y1, y2, ŷ) and g2(y1, y2), it follows that the PID control
system (11) can simply be written as

⎧
⎪⎪⎨
⎪⎪⎩

dy0 = y1dt,

dy1 = y2dt,

dy2 =
[
a1y1 + b1y2 − γ(kiy0 + kpy1 + kdy2)

]
dt +

[
a2y1 + b2y2

]
dw(t),

(12)

where a1 = a1(y1), b1 = b1(y1, y2), γ = γ(y0, y1, y2), a2 = a2(y1) and b2 = b2(y1, y2).
Furthermore, the system (12) can be rewritten in the following compact form:

dY = A1(y0, y1, y2)dt + A2(y1, y2)dw(t), (13)

where

Y τ = [yτ
0 , yτ

1 , yτ
2 ],

A1(y0, y1, y2) =

⎡
⎢⎢⎣

y1

y2

−γkiy0 + (−γkp + a1)y1 + (−γkd + b1)y2

⎤
⎥⎥⎦ ,
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A2(y1, y2) =

⎡
⎢⎢⎣

0

0

a2y1 + b2y2

⎤
⎥⎥⎦ .

By adopting a similar method as that used for deterministic system (see [20]), we construct
the following Lyapunov function:

V (Y ) = Y τPY,

where the matrix P is defined by

P =
1
2

⎡
⎢⎢⎣

2kikpbIn 2kikdbIn kiIn

2kikdbIn (2kpkdb − ki)In kpIn

kiIn kpIn kdIn

⎤
⎥⎥⎦ , (14)

which can be verified to be positive definite, since k2
p − 2kikd > 0 and k2

d − kp/b (see [20] for
detailed discussion).

Denote μ and μ as the minimum and the maximum eigenvalues of P respectively, then we
have

μY τY ≤ V (Y ) ≤ μY τY. (15)

From (13) and Definition 2.1, we know that the differential operator L acting on V can be
calculated as follows:

LV (Y ) =
∂V

∂t
+

∂V

∂Y τ
A1 +

1
2
tr
[
Aτ

2

∂2V

∂Y 2
A2

]

= −Y τQY,

where Q is a 3n × 3n symmetric matrix defined by

Q =

⎡
⎢⎢⎣

γk2
i γkpki − c1 γkikd − c2

γkpki − cτ
1 γk2

p − c3 γkpkd − c4

γkikd − cτ
2 γkpkd − cτ

4 γk2
d − c5

⎤
⎥⎥⎦ ,

and

c1 =
ki

2
a1 + kpkibIn,

c2 =
ki

2
b1 + kikdbIn,

c3 = kp
a1 + aτ

1

2
+ 2kikdbIn + kd

aτ
2a2

2
,

c4 =
kp

2
b1 +

kd

2
aτ
1 + kpkdbIn +

kd

2
aτ
2b2,

c5 = kd
b1 + bτ

1

2
+ kpIn + kd

bτ
2b2

2
.
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Next, we will proceed to show the positive definiteness of matrix Q.
First, we will show that Q has the following lower bound:

Q ≥ Q0 �

⎡
⎢⎢⎣

bk2
i In bkpkiIn − c1 bkikdIn − c2

bkpkiIn − cτ
1 bk2

pIn − c3 bkpkdIn − c4

bkikdIn − cτ
2 bkpkdIn − cτ

4 bk2
dIn − c5

⎤
⎥⎥⎦ , (16)

since it can be verified easily that the following matrix R is positive definite:

R =

⎡
⎢⎢⎣

k2
i kpki kikd

kpki k2
p kpkd

kikd kpkd k2
d

⎤
⎥⎥⎦ ≥ 0,

and the following equation holds:

Q − Q0 = R ⊗ (γ − bIn) ≥ 0†,

where A ⊗ B refers to the Kronecker product of matrices A and B.

We shall now show the positive definiteness of matrix Q0.
Let

H =

⎡
⎢⎢⎢⎣

In 0 0

−(bkpkiIn − cτ
1) 1

bk2
i

In 0

−(bkikdIn − cτ
2) 1

bk2
i

0 In

⎤
⎥⎥⎥⎦ ,

then

HQ0H
τ =

⎡
⎣ bk2

i In

Q1

⎤
⎦ ,

where

Q1 =

⎡
⎣ k2

pbIn − aτ
1a1
4b − c3 bkpkdIn − aτ

1 b1
4b − c4

bkpkdIn − bτ
1a1
4b − cτ

4 bk2
dIn − bτ

1 b1
4b − c5

⎤
⎦ .

To prove the matrix Q is positive definite, we only need to show that Q1 is positive definite
since the matrix H is invertible and bk2

i > 0.
Recall the boundedness of a1, b1, a2 and b2, it follows that for any x = [ x1

x2 ] ∈ R
2n, we have

xτQ1x ≥
[
(k2

p − 2kikd)b − L2
1

4b
− kpL1 − kd

N2
1

2

]
‖x1‖2

−
(

L1L2

2b
+ kpL2 + kdL1 + kdN1N2

)
‖x1‖‖x2‖

+
(

k2
db − kp − kdL2 − kd

N2
2

2

)
‖x2‖2

†The Kronecker product of two positive semi-definite matrices is also a positive semi-definite matrix.
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≥
[
(k2

p − 2kikd)b − L2
1

4b
− kpL1 − kdN

2
1

]
‖x1‖2

−
(

L1L2

2b
+ kpL2 + kdL1

)
‖x1‖‖x2‖

+
(
k2

db − kp − kdL2 − kdN
2
2

)‖x2‖2

�
[
‖x1‖ ‖x2‖

]
Q2

⎡
⎣ ‖x1‖

‖x2‖

⎤
⎦ ,

where Q2 is a symmetric matrix defined by

Q2 =

⎡
⎣ q11 −q12

−q21 q22

⎤
⎦ ,

where

q11 = (k2
p − 2kikd)b − L2

1

4b
− kpL1 − kdN

2
1 ,

q12 = q21 =
L1L2

4b
+

kpL2 + kdL1

2
,

q22 = k2
db − kp − kdL2 − kdN

2
2 .

From the definition of the PID parameter set Ωpid (5), we know that

kp >
k

kpb
>

L1 + L2

b
, kd >

k

kdb
>

L1 + L2

b
.

It follows that

q11 >kpL2 + kd(L1 + L2) − L2
1

4b

>
kpL2 + kdL1

2
+

kd(L1 + L2)
2

− L2
1

4b

>
kpL2 + kdL1

2
+

(L1 + L2)2

2b
− L2

1

4b

>q12,

and

q22 >kdL1 + kp(L1 + L2)

>
kpL2 + kdL1

2
+

kp(L1 + L2)
2

>
kpL2 + kdL1

2
+

(L1 + L2)2

2b

>q12.
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Note that q12 = q21 > 0. It can be deduced directly that the matrix Q2 > 0, which, in turn,
gives the positivity of Q1. As a result, the positive definiteness of Q0 is verified.

From the definition of Q0, it is easy to see Q0 is continuously dependent on the variables
a1, b1, a2 and b2. Moreover, notice that the matrices a1, b1, a2 and b2 vary on a compact set,
namely ‖a1‖ ≤ L1, ‖b1‖ ≤ L2, ‖a2‖ ≤ N1 and ‖b2‖ ≤ N2. From Lemma 3 in [20], there exists
η > 0, such that Q0 ≥ ηI3n for all ‖a1‖ ≤ L1, ‖b1‖ ≤ L2, ‖a2‖ ≤ N1 and ‖b2‖ ≤ N2. Therefore,
the following inequality holds:

LV (Y ) ≤ −ηY τY. (17)

By using Theorem A.2, the PID control system (2)–(3) will satisfy

lim
t→∞E‖x1 − r∗‖2 = 0, lim

t→∞E‖x2‖2 = 0,

exponentially, for any initial values x1(0), x2(0) ∈ R
n.

4.2 Proof of Theorem 3.9

Proof Suppose f ∈ FL1,L2,b,r∗ , σ ∈ GN1,N2,r∗ and (kp, kd) ∈ Ωpd. Denote y1 = e(t) and
y2 = ė(t), then the PD controlled system (2)–(6) can be rewritten as

⎧
⎨
⎩

dy1 = y2dt,

dy2 = −f(r∗ − y1,−y2, kpy1 + kdy2)dt − σ(r∗ − y1,−y2)dwt.
(18)

Since f(r∗, 0, 0) = σ(r∗, 0) = 0, 0 ∈ R
2n is an equilibrium of the system (18).

Denote g1(y1, y2, u) = −f(r∗ − y1,−y2, u) and g2(y1, y2) = −σ(r∗ − y1,−y2). Similar to the
proof of Theorem 3.5, g1 and g2 can be decomposed into

g1(y1, y2, kpy1 + kdy2) = a1(y1)y1 + b1(y1, y2)y2 − γ(y1, y2)(kpy1 + kdy2),

g2(y1, y2) = a2(y1)y1 + b2(y1, y2)y2,

where ‖a1‖ ≤ L1, ‖b1‖ ≤ L2,0 < bIn ≤ γ,‖a2‖ ≤ N1 and ‖b2‖ ≤ N2.

For simplicity, we set

Y τ = [yτ
1 , yτ

2 ] ,

A1(y1, y2) =

⎡
⎣ y2

(−γkp + a1)y1 + (−γkd + b1)y2

⎤
⎦ ,

A2(y1, y2) =

⎡
⎣ 0

a2y1 + b2y2

⎤
⎦ ,

then the system (18) turns into

dY = A1(y1, y2)dt + A2(y1, y2)dwt. (19)

Similar to [20], we now consider a quadratic Lyapunov function

V (Y ) = Y τPY, (20)
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where

P =
1
2

⎡
⎣ 2kpkdbIn kpIn

kpIn kdIn

⎤
⎦ .

From the definition of Ωpd, the following facts can be verified:

2kpkdb > 0, 2kpk
2
db − k2

p = kp(2k2
db − kp) > 0.

Thus, the positive definiteness of matrix P is true.
By simple manipulations, the differential operator L acting on (20) along the trajectories

of (19) is given by

LV (Y ) =
∂V

∂t
+

∂V

∂Y τ
A1 +

1
2
tr
[
Aτ

2

∂2V

∂Y 2
A2

]

= −
[
yτ
1 , yτ

2

]
Q

⎡
⎣y1

y2

⎤
⎦ ,

where Q is a symmetric matrix expressed by

Q =

⎡
⎣ kp(γkp − a1+aτ

1
2 ) − aτ

2a2
2 kpkd(γ − bIn) − kdaτ

1+kpb1+kdaτ
2b2

2

∗ kd(γkd − b1+bτ
1

2 ) − kp − kdbτ
2b2
2

⎤
⎦ , (21)

which has the following lower bound:

Q ≥ Q0 �

⎡
⎣ kp(bInkp − a1+aτ

1
2 ) − aτ

2a2
2 −kdaτ

1+kpb1+kdaτ
2b2

2

−kda1+kpbτ
1+kdbτ

2a2
2 kd(bInkd − b1+bτ

1
2 ) − kp − kdbτ

2b2
2

⎤
⎦ ,

since

Q − Q0 =

⎡
⎣ k2

p kpkd

kpkd k2
d

⎤
⎦⊗ (γ − bIn) ≥ 0.

Similar to the prove of Theorem 3.5, the positive definiteness of matrix Q0 could be verified
by the fact that for all x = [ x1

x2 ] ∈ R
2n, the following inequality holds:

xτQ0x ≥
[
‖x1‖ ‖x2‖

]
Q1

⎡
⎣‖x1‖
‖x2‖

⎤
⎦ ,

where

Q1 =

⎡
⎣ k2

pb − kpL1 − kdN
2
1 −kdL1+kpL2

2

−kdL1+kpL2
2 k2

db − kdL2 − kp − kdN
2
2

⎤
⎦ .

From the definition of Ωpd, it is easy to check the positive definiteness of matrix Q1. Hence

xτQ0x ≥ 0, ∀x �= 0,

which means Q0 is positive definite.
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Denote the minimum eigenvalue of Q1 as η. Then, the following results can be obtained:

LV (Y ) = −Y τQY ≤ −Y τQ0Y ≤ −
[
‖y1‖, ‖y2‖

]
Q1

⎡
⎣‖y1‖
‖y2‖

⎤
⎦ ≤ −ηY τY.

From Theorem A.2, the original PD control system (2)–(6) will satisfy

lim
t→∞E‖x1 − r∗‖2 = 0, lim

t→∞E‖x2‖2 = 0,

exponentially, for any initial values x1(0), x2(0) ∈ R
n.

4.3 Proof of Theorem 3.11

Proof Similar to the proof of Theorem 3.5, Φ(u) � f(r∗, u) is a global diffeomorphism.
Thus, there exists a unique zero point u∗ ∈ R

n, such that Φ(u∗) = 0.

Substituting the original state vector x with a related new vector Y τ =
[
yτ
0 , yτ

1

]
∈ R

2n by
a transformation of the form

y0 =
∫ t

0

e(s)ds − u∗

ki
, y1 = e(t).

Then, the original PI controlled system (8)–(9) is replaced by a new description
⎧
⎨
⎩

dy0 = y1dt,

dy1 = −f(r∗ − y1, kiy0 + kpy1 + u∗)dt − σ(r∗ − y1)dwt.
(22)

From the definition of function spaces FL,b and GM,r∗ , it can be easily checked that 0 ∈ R
2n

is the equilibrium point of the system (22).
For simplicity, set g1(y1, kiy0+kpy1) = −f(r∗−y1, kiy0+kpy1+u∗) and g2(y1) = −σ(r∗−y1).

Then, similar to the proof of Theorem 3.5, these two functions can be decomposed as

g1(y1, kiy0 + kpy1) = a(y1)y1 − γ(y0, y1)(kiy0 + kpy1),

g2(y1) = b(y1)y1,

with the following properties

‖a(y1)‖ ≤ L, γ(y0, y1) ≥ bIn > 0, ‖b(y1)‖ ≤ N.

Accordingly, the system (22) can be replaced by a new description

dY = A1(y0, y1)dt + A2(y1)dwt, (23)

where

Y τ =
[
yτ
0 , yτ

1

]
, A1(y0, y1) =

⎡
⎣ y1

−γkiy0 + (−γkp + a)y1

⎤
⎦ , A2(y1) =

⎡
⎣ 0

b(y1)y1

⎤
⎦ .
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Similar to [20], we now construct a Lyapunov function as follows

V (Y ) = Y τPY, (24)

where

P =
1
2

⎡
⎣ 2kpkibIn kiIn

kiIn kpIn

⎤
⎦ .

From the definition of the parameter set Ωpi, the positive definiteness of P can be checked
easily since

kpkib > 0, 2k2
pkib − k2

i = ki(2k2
pb − ki) > 0.

Calculating the differential operator L acting on (24) associated with the system (23)

LV (Y ) =
∂V

∂t
+

∂V

∂Y τ
A1 +

1
2
tr
[
Aτ

2

∂2V

∂Y 2
A2

]

= − γk2
i y

τ
0y0 + yτ

0 [2kpki(bIn − γ) + kia]y1

+ yτ
1

(
− γk2

p + kp
a + aτ

2
+ kiIn +

1
2
kpb

τb

)
y1

= − Y τQY,

where Q is a symmetric matrix defined by

Q =

⎡
⎣ γk2

i kpki(γ − bIn) − kia
2

∗ γk2
p − kiIn − kp

a+aτ

2 − kpbτ b
2

⎤
⎦ .

Similar to the proof of Theorem 3.9, there exists a positive definite matrix Q0 such that
Q ≥ Q0, which is expressed by

Q0 =

⎡
⎣ bk2

i In −kia
2

−kia
τ

2 bk2
pIn − kiIn − kp

a+aτ

2 − kpbτ b
2

⎤
⎦ .

The inequality Q ≥ Q0 holds since

Q − Q0 ≥
⎡
⎣ ki kpki

kpki k2
p

⎤
⎦⊗ (γ − bIn) ≥ 0.

To prove the positive definiteness of matrix Q0, we shall check whether the following property
holds

xτQ0x ≥ 0, ∀x �= 0.

For any x ∈ R
2n (xτ = [xτ

1 , xτ
2 ]), we have

xτQ0x ≥
[
‖x1‖, ‖x2‖

]
Q1

⎡
⎣‖x1‖
‖x2‖

⎤
⎦ ,
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where

Q1 =

⎡
⎣ bk2

i −kiL
2

−kiL
2 bk2

p − ki − kpL − kpN2

2

⎤
⎦ .

Note that (kp, ki) ∈ Ωpi, the following inequalities hold:

bk2
i > 0,

4bk2
i

(
bk2

p − ki − kpL − kpN
2

2

)
− k2

i L2 > 0,

which means Q1 is positive definite.
Denote η as the minimum eigenvalue of Q1. Then,

LV = −Y τQY ≤ −Y τQ0Y ≤ −
[
‖y0‖, ‖y1‖

]
Q1

⎡
⎣‖y0‖
‖y1‖

⎤
⎦ ≤ −ηY τY.

Hence, by using Theorem A.2, the system (8)–(9) will satisfy limt→∞E‖x − r∗‖2 = 0,

exponentially, for any initial values x(0) ∈ R
n.

5 Simulations

Consider the following stochastic nonaffine system:
⎧
⎨
⎩

dx1 = x2dt,

dx2 = f(x1, x2, u)dt + σ(x1, x2)dw(t),
(25)

where f(x1, x2, u) = a sinx1 + bx2 + cu3 + u, σ(x1, x2) = d sin x2, and a, b, c, d are unknown
parameters with known bounds |a| ≤ L1, |b| ≤ L2, c > 0 and |d| ≤ N. Note that

∣∣∣∣
∂f

∂x1

∣∣∣∣ = |a cosx1| ≤ L1,

∣∣∣∣
∂f

∂x2

∣∣∣∣ = |b| ≤ L2,
∂f

∂u
= 3cu2 + 1 ≥ 1, ∀x1, x2, u ∈ R

1,

∣∣∣∣
∂σ

∂x1

∣∣∣∣ = 0,

∣∣∣∣
∂σ

∂x2

∣∣∣∣ = |d cosx2| ≤ N, ∀x1, x2 ∈ R
1, σ(r∗, 0) = 0, ∀r∗ ∈ R

1,

we conclude that the uncertain functions satisfy f ∈ FL1,L2,1 and σ ∈ G0,N,r∗ . For simplicity,
we assume that L1 = L2 = N = 1, then it can be verified that (kp, ki, kd) = (8, 1, 8) ∈ Ωpid.

First, suppose the PID parameters (kp, ki, kd) = (8, 1, 8) are fixed, (x1(0), x2(0)) = (3, 2) is the
initial state, and r∗ = 1 is the setpoint. Figure 1 depicts the curves of the control error e(t)
under different system parameters a, b, c and d.

From Figure 1, one can see that the given PID controller has the ability to stabilize and
regulate the control system (25), even if the system parameters (a, b, c, d) vary in a wide range.
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Figure 1 Curves of e(t) under different system parameters (a, b, c, d)

Next, we try to understand how different PID parameters will affect the control performance.
Recall L1 = L2 = N = 1, it can be verified that (kp, ki, kd) = (k, k

7 , k) ∈ Ωpid, ∀k ≥ 7. In
Figure 2, the system parameters are randomly generated (a ∈ [−1, 1], b ∈ [−1, 1], c ∈ [0, 2],
and d ∈ [−1, 1]). As we can see from Figure 2, all the PID controlled systems achieve their
regulation objectives quite fast. Moreover, from Figure 3, one can also see that large PID gains
might increase the amplitude of the controller, and lead to the high-frequency oscillation of the
control input.

t

t
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k=21
k=35

e(
t)

e(
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Figure 2 Curves of e(t) under different PID parameters
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Figure 3 Curves of u(t) under different PID parameters

6 Conclusion

This paper investigates the regulation problem of classical PID control for a class of nonaffine
stochastic systems, and provides a rigorous mathematical analysis together with an explicit de-
sign formula for the choice of controller parameters. It has been shown that a three dimensional
open unbounded parameter set can be constructed based on the bounds of partial derivatives
on both the drift and diffusion terms. It has also been shown that whenever the PID parame-
ters are taken from the parameter set, the closed-loop controlled systems will reach the desired
setpoint with exponentially convergent regulation error. Similar results have also been provided
for PD and PI control. For further investigation, it would be meaningful to further develop
some optimal design principles or guidelines in selecting PID parameters within the parameter
set provided in the current paper, and to consider more practical situations including time-delay
and saturation, etc.
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Appendix

Theorem A.1 (see [20]) Let Φ(x) ∈ C1(Rn, Rn). Suppose that

∂Φ
∂x

≥ R, ∀x ∈ R
n,

where R ∈ R
n×n is positive definite, then Φ is a global diffeomorphism on R

n.

Theorem A.2 (see [26]) The equilibrium x = 0 of the system (1) will satisfy

E‖x(t)‖2 ≤ c‖x0‖2e−αt, ∀t ≥ 0

for some positive constants c and α, if there exist positive constants k1, k2, k3, and a function
V (x, t) ∈ C2(Rn × R

+, R+) such that

k1‖x‖2 ≤ V (x, t) ≤ k2‖x‖2,

LV (x, t) ≤ −k3‖x‖2.

Proof of Proposition 3.3.

Proof First, without loss of generality, we assume that r∗ = 0. Suppose that for some
kp, ki and kd and for some initial state (x1(0), x2(0)), the closed-loop equation satisfies

lim
t→∞ Ex2

1(t) = 0 and lim
t→∞ Ex2

2(t) = 0,

exponentially, we proceed to show that σ(0, 0) = 0.
Denote x0(t) =

∫ t

0
x1(s)ds = − ∫ t

0
e(s)ds, then x0(t) − x0(s) =

∫ t

s
x1(τ)dτ. By Minkowski’s

integral inequality, it follows that

E(x0(t) − x0(s))2 =E

(∫ t

s

x1(τ)dτ

)2

≤
[∫ t

s

(Ex2
1(τ))

1
2 dτ

]2

, 0 ≤ s ≤ t. (26)

Note that (Ex2
1(t))

1
2 ≤ Me−λt, for all t ≥ 0, from (26), we have

E(x0(t) − x0(s))2 ≤
[∫ t

s

Me−λτdτ

] 1
2

≤
(

M

λ
e−λs

) 1
2

→ 0, as s → ∞,

which implies that {x0(t), t ≥ 0} is Cauchy in L2(Ω , F , P ). Consequently, there exists an
L2-integrable random variable x∞ such that

lim
t→∞ x0(t) = x∞, in L2(Ω , F , P ).

Notice that u(t) = −(kix0(t) + kpx1(t) + kdx2(t)), it is easy to see

lim
t→∞u(t) = −kix∞

�
= u∞, in L2(Ω , F , P ).
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Recall dx2(t) = f(x1, x2, u(t))dt + σ(x1, x2)dw(t), it follows that

x2(t + 1) − x2(t) = Xt + Yt, (27)

where Xt =
∫ t+1

t f(x1(s), x2(s), u(s))ds and Yt =
∫ t+1

t σ(x1(s), x2(s))dw(s). Next, we proceed
to show that

E[XtYt] → 0, as t → ∞. (28)

First, by the Lipschitz property of f and σ, and notice the facts that Ex2
1(t), Ex2

2(t) and Eu2(t)
are bounded functions of t, it is not difficult to obtain that EX2

t and EY 2
t are also bounded

functions of t ∈ [0,∞).
Similarly, note that

lim
t→∞x1(t) = 0, lim

t→∞x2(t) = 0, lim
t→∞u(t) = u∞, in L2(Ω , F , P ),

we can obtain

lim
t→∞ E[Xt − f(0, 0, u∞)]2 = 0, lim

t→∞ E[Yt − σ(0, 0)(w(t + 1) − w(t)]2 = 0.

Thus, to prove (28), it suffices to show

E[f(0, 0, u∞)(w(t + 1) − w(t))] → 0, as t → ∞. (29)

It comes immediately since for any given T > 0, we have

Ef(0, 0, u(T ))(w(t + 1) − w(t)) → 0, t → ∞

and the fact that
lim

T→∞
f(0, 0, u(T )) = f(0, 0, u∞), in L2(Ω , F , P ).

From (27), it follows that

lim
t→∞ E(X2

t + Y 2
t + 2XtYt) = lim

t→∞ E[x2(t + 1) − x2(t)]2 = 0,

which implies limt→∞ EY 2
t = 0. Denote σ2(x1, x2) − σ2(0, 0) = g(x1, x2), by Itô’s isometry, we

have

0 = lim
t→∞ EY 2

t = lim
t→∞

∫ t+1

t

Eσ2(x1(s), x2(s))ds

= lim
t→∞

∫ t+1

t

E
[
σ2(0, 0) + g(x1(s), x2(s))

]
ds

=σ2(0, 0) + lim
t→∞

∫ t+1

t

Eg(x1(s), x2(s))ds

=0.

From the Lipschitz condition of σ, there exists M > 0 such that |g(x1, x2)| ≤ M(x2
1 + x2

2 +
|x1| + |x2|), and therefore limt→∞

∫ t+1

t
Eg(x1, x2)ds = 0, which in turn gives σ(0, 0) = 0.


