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Abstract: The parameter estimation of continuous-time finite-dimensional linear stochastic systems is a problem of long-standing 
interest. The method usually used is the extended least-squares (ELS) algorithm described by a nonlinear stochastic differential equation 
(SDE), with the existence of the global strong solution assumed. This paper shows that the ELS estimate does exist in [0, ~), and at the 
same time presents a number of convergence results paralleling those for the discrete-time case. 
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1. Introduct ion 

Cons ide r  the fol lowing s t a n d a r d  l inear  state space model :  

dxt = Ax t  dt  + Bu ° dt  + D dwt, dy ° = Cxt  dt  + dwt, 

where yO and  u ° are the scalar  ou tpu t  and  input ,  respectively,  xt is the r -d imens iona l  state vector,  {wt, ~ }  is 
a Wiene r  process  on the basic  p robab i l i t y  space ( f2 ,~ ,  P), and  A,B ,  C and D are unknow n  matr ices  of  
compa t ib l e  d imensions .  W i t h o u t  loss of  general i ty,  assume tha t  yO = u o = 0, x, = 0, Vt < 0. Then  the 
i n p u t - o u t p u t  re la t ionship  can be wri t ten  as (cf. [3, pp. 403 -404] )  

A ( S ) y  ° = S B ( S ) u  ° + C(S)w, ,  

where A(S), B(S) and  C(S) are po lynomia l s  in integral  o p e r a t o r  S (i.e. Swt a_ ~t ° wz dz): 

A(S)  = 1 + axS + " ' + apS p, p >  1, 

B(S)  = bl + b E S  + " " " "l- bqS q - l ,  q >__ 1, 

C ( S ) =  I + c l S  + " " + crS', r > O ,  

with u n k n o w n  real  coefficients al, bj and  Ck and with known  upper  bounds  p, q and r for orders.  
As no ted  by M o o r e  1-12, p. 197], it is usual  to in t roduce  a prefil ter D(S) = 1 + d i S  + • • • + drS', which is 

exponen t ia l ly  stable,  giving rise to  pref i l tered var iables  Yt and  ut defined 
ut ~= D - l ( S ) u ° .  Thus  we ob ta in  the fol lowing re la t ionship  between Yt and  ut: 

A(S)y ,  = SB(S)u,  + C(S)vt,  t >_ O, 

D(S)v, = w,. 

Let us denote  the u n k n o w n  p a r a m e t e r  by  

O = [ - - a 1  . . .  - a p  bl  . . . b ~  c a . . . c , ]  T 

f rom y, ~= D -  1 (S)yO, and  

(1.1) 

(1.2) 

(1.3) 
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and set 

99o = [Yt ,  Syt  . . . .  S p -  ly t  

/)(S) = [D(S) -- 1]IS,  

Then (1.1) and (1.2) can be rewritten as 

dyt = 0 T q~O dt + dvt, 

dr, = dw~-  [/)(S)v,] dt. 

ut . . . .  S q - l u t  vt . . . .  S r - l v t ]  T (1.4) 

C ( s )  = [ c ( s )  - 1]/s. 0 . 5 )  

(1.6) 

(1.7) 

The commonly used extended least-squares (ELS) estimate Ot for 0 is defined by the following stochastic 
differential equation (SDE) (cf. [1, 5]): 

dot = P, cpt[dyt - OT ~p,dt + (O(S )Ot )d t ] ,  (1.8) 

d~, = dyt  - O,T q~tdt, (1.9) 

~Pt = [ y ,  Syt  . . . .  S P - l y t  ut . . . .  s q - l u t  l?t . . . .  S r -1  t3,] T (1.10) 

Pt = ~os(p~ds + a I  , a > 0, (1.11) 

where 00 is deterministic and arbitrarily chosen, and t~o = 0. 
Clearly, (1.8)-(1.11) is a nonlinear SDE for (0t,~t). This SDE may be regarded as the continuous-time 

analogue of the discrete-time extended least-squares (ELS) algorithm (e.g. [1-5, 12]). 
The above ELS algorithm has attracted much research interest over the past decade. However, to the best 

of the author's knowledge, the basic existence and uniqueness problem for ELS still remains open in the 
literature. Indeed, almost all of the existing results build on the assumption that the ELS estimate 07 exists in 
[0, ~ )  (see, e.g. [1, p. 131; 2, p. 515; 5, p. 267; 12, p. 199]). In this paper, we will first study this long-standing 
problem, proving that under very mild conditions on the input process and the noise model, the ELS estimate 
0t does exist in [0, oo) and is the unique strong solution of the SDE (1.8)-(1.11), and then we will discuss the 
convergence rate of ELS together with the related excitation problem. 

2. Existence of ELS 

For convenience of analysis, we first derive the error equation associated with (1.8) and (1.9). Set 

= 0 - Or, ~, = v , -  f),. (2.1) 

Then substituting (1.6) and (1.7) into (1.8) we have 

dO, = - dot = --Ptq~t[ oX(qo ° -- q~t)dt -- D ( S ) ~ t d t  + gZ~p, d t  + dwt]  

= - P , q ) t  [(C(S) - D ( S ) ) 6 t  d t  + ~T (p,dt + dwt]  (2.2) 

Next, by (1.6) and (1.9), 

d~, = dvt - df)t = OX q~,dt - OX q)° d t  

= -- [~T~o t + 0V(~p ° -- qO,)] dt = -- ~T~ptdt -- [C(S)g,] dt. (2.3) 

Consequently, C ( S ) ( d f t / d t )  = - O x q J t .  By this we may rewrite (2.2) as 

dff, = - P t ~ p t [ ( C ( S )  - / ) ( S ) ) ( - S C -  ' ( S ) ~ T  ~pt)dt + ~Tcptdt + dw,] 

= - PtcPt [ ( D ( S ) C -  ' ( s )OT~p t )d t  + dwt ]  (2.4) 
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We now write (2.3) and (2.4) in the following compact form: 

dxt = a ( t , x ) d t  + b( t ,x )dwt ,  Xo = [ 0 o , 0 , . . . , 0 ]  T, 

where 

x = (x,) t>_o,  x ,  = [ g , T , ~ , , S ~ ,  . . . .  S ' - 1 ~ , ]  ~ 
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(2.5) 

(2.6) 

and 

- g ,  - C ( S ) ~ t  0 

a(t, x) = g, , b(t, x) = . 

0 
S r - 2 Vt  

(2.7) 

g, = (prt fft, f = [D(S)C-X(S)]g ,  (2.8) 

tp, = [Yt . . . .  Sp - l y , ,  ut . . . .  Sq-Xu,,  ( v t -  vt) . . . .  Sr - l (v t  _ ~,)]T (2.9) 

and where Pt is defined by (1.11), and the initial value Oo is deterministic and arbitrarily chosen. 
Clearly, the existence of a global solution of the SDE (1.8)-(1.11) implies that of the SDE (2.5)-(2.9) and 

vice versa. So we need only study the SDE (2.5)-(2.9). 
The main result of this section is as follows: 

Theorem 2.1. For System (1.1) and (1.2), assume that the input process {ut} is continuous and adapted to { ~ } ,  
and that the transfer function D ( S ) C -  I (S) - 1/2 is strictly positive real. Then the SDE (2.5)-(2.9) has a unique 
strong solution {xt,o~} on [0, oo). 

An immediate consequence of Theorem 2.1 is that the ELS estimate/?t exists on [0, oe) and is the unique 
strong solution of the SDE (1.8)-(1.11). It should be noted that the continuity of the input process is assumed 
only for simplicity of discussions; it can be further weakened, as can easily be seen from the proof. Also, the 
positive real condition on the noise model is a standard one in the literature of recursive system identification. 

To prove Theorem 2.1, it is necessary to introduce some notations. Denote by cd[0, T], the space of 
~d-valued continuous functions on the interval [0, T], T > 0, and by (C d [0, T], ~T) the measurable space 
of continuous functions x = (xt,0 < t < T) with the g-algebra Mr = a{x:xt ,O < t < T}. Also, set 
Mt = a {x: xs, s _< t}, V t _< T. As usual, 2rain(X) and 2max(X) denote the minimum and maximum eigenvalues 
of a real matrix X, respectively, and the norm of X is defined as [] X II = {:,max(xxT))1/2 When x = (xt)t<_ r is 
a ca[o,  T] process, we set [1 x lit0, r j  = maxt_<r I[ xt I1. 

We first present some preliminary results on the following general vector SDE: 

dxt = a ( t , x )d t  + b( t ,x )dwt ,  Xo = t/ (2.10) 

where t/ is an o%-measurable random vector, {w~,~t} is a standard Wiener process, a(t ,x)  and b(t,x), 
t < T ,x  e C d [0, T],  are ~ x ~t-measurable vector functionals of dimension d( > 1). 

Lemma 2.1. Assume that for  each n > 1 there exists a continuous process {Ll"),o~}t<r, such that for  t < T, 
x , y ~  C d[O,T] and n > 1, 

[ l l a ( t , x ) -  a(t,y)[t 2 + I l b ( t , x ) -  b(t,y)ll2]I(llxll[o, rl <_ n, []Ylllo. r l -< n) 

_< L t " ' { , l x , - y ,  ll2 + , a.s. V n >  (2.11) 
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and 

[,,a(t,x),lz + llb(t,x)]lZ]l(llxllto, rj < n) < L(,"'{ l + llxtllz + f i  llxsll2 ds } a.s., (2.12) 

where I(A) is the indicator function of  a set A. Then there exists an ~,~-Markov time aT > 0 such that the SDE 
(2.10) has a unique strong solution x = (xt) on It < a t ] ,  and 

sup Ilxtll = ~ a.s,, on [a t  < T]. 
l "<~ (J T 

This lemma is a minor  extension of the existing results on local solutions (see, e.g. [-8, Theorem 3.1]), for 
a proof, see Appendix A. The Markov  time a r is usually called the explosion time of the SDE (2.10). If in (2.12) 
the process {L~ "~ } does not  depend on n, i.e. L~, "~ =_ L,, then it can be shown that P (a r  = T)  = 1, which means 
that the solution of the SDE(2.10) is a global one on [0, T].  Related results under certain nonlinear growth 
conditions may also be found in the literature (e.g. [-7, 9]). However,  direct applications of these results to the 
SDE (1.8)-(1.11) are found to be difficult. The main reason is that we do not  know how to verify the growth 
conditions in, e.g. [7, Theorem 1]. Therefore, we present another  lemma on the existence of the global 
solution by using a different growth condition, which can be directly applied to the SDE (1.8)-(1.11), giving 
a simple and straightforward existence proof  of ELS. 

Lemma 2.2. Let a(t, x) and b(t, x), t > 0, and x ~ Ca[0, ~ )  (the space of  d-dimensional continuous functions on 
[0, ~ )), satisfy (2.11) and (2.12)for any T > O, where (Ltt "~, ~ ) ,  >_ o is a continuous nonne9ative process for each 
n > 1. Suppose there exists a symmetric matrix functional Qt (x): [0, ~ )  x C a [0, ~ )  x f2 ~ :~a × a with Qt(x) and 
dQ,(x)/dt measurable o~t x ~ t ,  and with inf,.x2mi~[Qt(x)] > 0 a.s., such that for any t > O,x ~ Ca[O, ~ ), 

;o fo L, as(x)ds <_ F~ + G~ I[x~llE ds - ~ IIbT(s,x)Qs(x)xsll2 ds (2.13) 

where e > 0 is a constant, { ~ ,  ~ }~ > o and { G,, ~ }, >_ o are continuous nonnegative adapted processes, and ~, (x )  
is defined by 

[ dQ,(x) ] 
~t (x )  = x~ L dt xt + 2x~Q,(x)a( t ,x)  + bT(t,x)Qt(x)b(t ,x).  (2.14) 

Then the SDE (2.10) has a unique strong solution on [0, ~ ) .  

The proof  is given in Appendix B. 
We are now in a position to prove Theorem 2.1. 

Proof  of Theorem 2.1. In order  to apply Lemma 2.2, we only need to verify (2.11) and (2.13), since a(t, 0) and 
b(t, 0) are cont inuous random processes. To  emphasize the dependence of q~t, P,, f . . . .  on x defined by (2.6), 
we will write them as ~p,(x),P~(x),ft(x) . . . . .  For  any T >  0, x , z ~  ca[o,  ~) ,  (d = p + q + 2r), Ilxllto. r l  < n, 
Iiz ILto, r j  < n, n > 1, by (2.6)-(2.9) we can derive that 

{ fo } I t b ( t , x ) - b ( t , z ) l l  = IlP,(x)~pt(x)- P,(z)~o,(z)ll < L~ "~ IIx,-z~[I + [ l x s -  zsllds , Vt < T, (2.15) 

where L~ "~ is ~ t -measurable  and cont inuous because {y ,  ut} is continuous. We now proceed to consider 
a(t, x). By (2.9), V t < T, 

It Or(x) - g,(z)II = [I ~0,(x) T t~,(x) - ~0,(z) T O,(z)II < N[ "1 II x, - z, tl (2.16) 

holds for some cont inuous N~ "1 depending on t,n and {y.~, us, s < t}. 
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Set h, = C-l(S)x t ,  x ~ Ca[O, ~), H, = [ht . . . . .  S ' -  l h,] T and 
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f lC l • • • -- Cr - 1 --Or } 

Fc = , 

1 0 

Then we have Ht = FcSH, + [ x , , 0 . . .  0] T, and so 

;o H , = F c  e x p { F c ( t - - s ) } [ x s , 0 . . . 0 ] T d s + [ x , , 0 . . . 0 ]  T. 

Hence by the fact that all eigenvalues of F~ are negative, we get 

IID(S)C-~(S)x, ll = IIh, + DxSht + . . .  + D,S'h, ll 

< O(IIH, II + IlSU, ll) = O(IIH, II + I IFF~(H, -  [ x , , 0 . . .  0]r)ll) 

<_ o ( I I H ,  II + Ilx, ll)<_o(f]llx, llds+ Ilx, ll). 
Replacing x, by g,(x) - g,(z) and noting (2.8) and (2.16) we have 

IL f , (x)  - f , ( z ) I I  = II D(S)C- 1(S) [gt(x) - gt(z)] II 

=Kt")(f I Ilx~-z~llds+ I l x , -  z, l l )  

(2.17) 

(2.18) 

where K~ ") is a continuous process adapted to { ~ } .  
Combining (2.15), (2.16) and (2.18) it is easy to see from definition (2.7) that a(t, x) and b(t, x) satisfy the local 

Lipschitz condition (2.11). 
We now proceed to verify (2.13). 
Since D(S)C-X(S) -- ½ is strictly positive real, by (2.8) there are constants e > 0 and Ko _> 0 such that 

fo[ f~-- + e  gs gsds+Ko>_O, Vt>_0, xECa[0 ,  oo). (2.19) 

Define 

Q ' ( x ) = (  P710 el,O) . (2.20) 

It is easy to see that Qt(x) is symmetric, uniformly positive definite, ~ x ~,-measurable, and such that 

IIb T (t, x) Qt(x) xt II 2 = II ~o, ~ if, II 2 = g2, (2.21) 

By (2.14), (2.21) and the definitions for a(t,x), b(t,x) and Qt(x) we have 

£t',(x) = g2 _ 2~T~a,f, 2e~,g, + 2e(~, . . . . .  S'-*~,) ~' - . + ~ o I e , ~ o ,  

S'-2~t 

<- 92 -- 2gtft + eg~ + ell~,ll 2 + eK~ IIx, ll 2 + q~Tptq~ t 
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+ K 1 ) [ [ x t [ 1 2  ÷ 

+ 23 -1 [[tp° U 2 + I-e(1 ÷ K1) + 2a  -1  ] Hx~[] 2 

where K~ is some constant. Hence by (2.19) we have 

;o ;o ;o fo ~Ax)ds  ~ 2Ko + 2a -1 It~o° 112 ds - -  g IIbT(s,X)Qs(X)Xsll 2 ds + K2 IIx~lt2ds, 

where K2 is a constant. Threfore, (2.13) is verified and the proof of Theorem 2.1 is complete. [] 

3. Convergence and Excitation 

Having established the existence and uniqueness of the ELS estimate, we discuss some of its asymptotic 
properties in this section. The following results are a continuous-time analogue of those for discrete-time 
systems (see [4, 10]). 

Theorem 3.1. Let  the conditions o f  Theorem 2.1 be satisfied. Then as t -~ c~ the estimation error ~, - 0 
produced by the ELS  estimate (1.8)-(1.11) has the following convergence rate: 

( ,ogrO t IIJ,-01t2=0 2mi, ( io~OOtpOTds+ai)  a.s., (3.1) 

provided that 

log r ° 
~ 0  a.s. 

~min (SO ~pO oT t q)~ ds  + aI)  

t 0 2 where q~t ° is defined by (1.4) and rt ° = e + ~o[]~p~ [I ds. 

Proof. First, note that (cf. [-2, Lemma 2]) 

foil ~7] 112 ds = 0(log ) a.s. (3.2) rt 

Set ~7 = [d~t/dt,~t . . . . .  Sr-2~t]x.  Then by (2.3) we have ~ = FcSVt + [--Otx~ot,0...  0] T, and so 

;o ~ = Fc e x p { F A t - -  S )}[ - -O~q~,O . . . O]T ds + [--~T~ot,O . . . O] T, 

where Fc is defined in the proof of Theorem 2.1. By the stability of F~ and (3.2) it is obvious that 
J'o II V~412 as = 0(logrt), and so 

fo fo IIS~lt2ds = II f~-~ [ P ~ -  ( ~ o , 0 . . .  0)T] 112 ds = 0(logr~). (3.3) 

Hence 

fo [II~H2 + " "  + I}Sr-15~112] ds = 0(logrt). 
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By this and the definitions for ~o, and q~o we have 

foil - ~0 ° i[2 ds = 0(logr,) tps a.s.,  

and consequently it follows that  

r, = O(r °) a.s. 

On the other hand, for any x e ~P+q+r, [1 x I1 = 1, we have 

) 0 OT /~min (ps~gs d s + a I  <2 [l[q~°-qg~ll2 + llxT~o, l l2]ds+a 

<--2xT(fi~o~o:ds+al)x+O(logr,). 

From this, (3.4) and the assumption it is easy to get 

2 m i n ( f o @ ° q g ° T d s + a I ) = O I 2 m i n ( f l q ~ s @ f d s + a I ) ] .  

Finally, the desired conclusion follows from this, (3.4) and [2, Remark 1]. [] 

(3.4) 

Theorem 3.1 shows that the strong consistency of the ELS is closely related to the growth rate of 
2rain ( StO ~O ° ~O ° T ds). We now give an explicit connection between 2 mi, ( St o q~o ~oo T ds) and the 'input' process {ut, vt }. 

Lemma 3.1. For the system (1.1), assume that the polynomials A(S), B(S) and C(S) have no common factor, and 
[apl + [bq[ + [cr[ > 0. Then there exists a constant c > 0 such that 

).min ( f l  z tZT  dt ) <__ C).min ( fo q~° qg°T dt ) a.s., V T > 0 ,  (3.5) 

where Zt is defined by (k = p + max{q,r}),  and 

1 
Z ,  = [ z  T . . . . .  S k -  1 zT-]T Zt = - E ~  j u t '  v t]T (3.6) 

with E(S) being any monic stable polynomial of S and deg{E(S)} > p. 

Proof. Set (o ° = [A(S)/E(S)] tp °. Then by (1.1) and (1.4) we have 

1 o o -  
E(S) 

SB(S)u, + C(S)v, SB(S) C(S) 

SPB(S)u, + SP lC(S)v, SPB(S) S~ 1C(S) 

A(S)u, A(S) 0 

Sq-IA(S)u~ Sq-IA(S) 0 

A(S)v, o A(S) 

S'-  ~ A(S)v, 0 S '-  ~ A(S) 

Zt 

H(S) = Zt, 
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where H(S) is a (p + q + r) × 2 polynomia l  matr ix  defined in an obvious way. 
For  any x E ~  p+q+r, [Ixlf = 1, let us define hi,gi, O < i < k  - 1, via xTH(S) = Y~=0k-~ [h~,9~]S ~. Since 

A(S), B(S) and C(S) have no c o m m o n  factor, by a similar a rgument  to that  used in [3, pp. 209-2111 it is easy 
k-1 to show that  inf  ~11 = ~ Y,~=o ( h2 + g z) > 0. Hence we have for some Co > 0, 

( f 0  T ) ~ I  k-1 1 2 )-rain (p°(p°Tdt = inf ~ (hi,gi)Sizt dt 
xll = 1 i=0 

( Y o )  (;o ) > inf ~-~, (f /2 + g/2) /~ mi n Z t Z ~ d t  ~ CO,~mi n Z , Z ~ d t .  (3.7) 
Ilxi = I i=0 

Next, applying L e m m a  1 in [21, we have for some c 1 > 0, 

2mi n ~O~OTdt = inf xT~0 ° dt 
,x,,~ , 30 \ E(S) 

< c ~  i~jinf= 1 fTo(XTq20)2dt=Cl/'min(fTotpOq)OTdt)" (3.8) 

Finally, the desired result follows f rom (3.7) and (3.8). [] 

Theorem 3.2. Assume that the input process of system (1.1) is a Gaussian (asymptotically)stationary process 
with rational spectrum density, which has the form ut = [P(S)/Q(S)] B,, Uo = O, where {B,} is a Brownian 
motion independent of {wt }, and P(S) and Q (S) are monic stable polynomials with deg P(S) + 1 < deg Q (S). I f  
D (S)C- 1(S) - ½ is strictly positive real, A (S) # O, ¥ Re {S} > O, A (S), B(S) and C(S) have no common factor and 
lapl + Ibql + Icrl > 0, then the ELS estimate has the following convergence rate: 

- -  a . s .  a s  t ---, oe. 

Proof.  Since {ut} and {vt} are asymptot ical ly  s ta t ionary processes and A(S) has no zeros in the open 
right-half  plane, it is easy to convince oneself that  

l og r  ° = O( log t )  a.s., (3.9) 

where r ° is defined in Theorem 3.1. 
Take  E(S) = P(S)E°(S),  with E°(S) monic,  stable and satisfying 

degE° (S )  _> p + max(q, r )  - deg P(S). 

The last requirement  guarantees  that  both  the degrees of  E°(S)Q(S) and E(S)D(S) are not  less than 
p + max(q,r) .  

Let us set z~ 1~ = E-l(S)ut ,  z~ 2~ = E - I ( S ) v t .  Then  we have 

1 1 Z(1) Z~2) _ 
t - EO(S)Q(S) Bt, E(S)D(s)Wt" 

Hence, by setting 

Z~ °~ = [Z~ I~T, Z~2'T] T, W ° = [ B ,  w,] T, 

Z~ 1~ = [z~ 1) . . . . .  Sk'-IZ~l)] T, kx = deg[E°(S)O(S) l ,  

Z]2) = [z~2) , . . .  , s k 2 -  I_t~(2)-ITj, k2 = deg [E(S)D(S)], 
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we know that  there is a control lable  pair  (F, G) with F stable such that  d Z  ° = F Z ° d t  + Gd W °.  Since W ° is 
also a Wiener  process, we have (cf. [2, L e m m a  3]) 

1 I T z o z O T d t  = R > 0 a.s., lim 
T ~ c o  J o  

which, in conjunct ion with L e m m a  3.1 and  the fact that  min{k l ,k2}  _> p + max{q, r} ,  implies 

1 ( f : )  
lim inf -~ 2mi. ~O ~OT dt > 0 a.s. 

T ~  

Hence the desired result follows f rom this, (3.9) and Theo rem 3.1. [] 

Appendix A 

Proo f  o f  L e m m a  2.1 

First  of  all, we note  that  if in (2.11) and (2.12) the process { L~ ") } does not  depend on n, then by the s tandard  
t runcat ion  me thods  and the familiar results on the SDE (2. i0) (e.g. [ 11, Theorem 4.6]), it can easily be shown 
that  the S D E  (2.10) has a unique s t rong solution x, on [0, T].  

Next,  let us define n > 1, ¢ e ~ d  and x e C d [0, T] ,  

0.(~) = ~min ' 1 1 ~  ' g.(x) = [O.(x,) ], <_ r, 

a . ( t ,x)  = a(t ,g.(x)),  b . ( t ,x)  = b(t, gn(X)). 

Then  it is obvious  that  
(i) O.(x) e Cd[O, T ]  whenever  x e Cd[O, T] ,  

(ii) II0.(X)lltO. T] < n, V x  e C"[-0, r] ,  
(iii) IIg,(~) -- g,(z)ll < nll~ -- zll, V ~ , z e ~  n. 

Hence  we know that  for each fixed n > 1, the SDE 

dx, = a , ( t , x )d t  + b , ( t , x )dw, ,  Xo = q, (A.1) 

has a unique s t rong solut ion x t") = (x}")),<r. Set 

inf{t  < T: sups___, Ilx~")ll _> n}, 

a , =  T, if sups_<rllx~")ll < n .  

Then  by a s tandard  t rea tment  (cf. [11, p. 143]) it is not  difficult to show that  a ,  < a .  + 1 a.s., and x~" ÷ 1~ = x~.) 
a.s., on [t < a .] ,Vn.  Let us define a r  A lim.~ootr. ,  and xt z~ x~.) on It < a.]. Then it is easy to see that  
x = (xt)t<oT is the unique local s t rong solution of the SDE (2.10). Moreover ,  since x~ "~ is cont inuous  in t, we 
have  sup . . . .  II x~ "~ II = n, on [ a .  < T] .  Consequen t ly ,  on  the set [at  < T] ,  sups<.~ 11 xs II -> sup . . . .  II x~ ") II 
oo, as n ~ ~ ,  which completes  the proof.  

Appendix B 

Proo f  o f  L e m m a  2.2 

Let us keep the nota t ions  in t roduced in the p roof  of  L e m m a  2.1. Fo r  the desired result, it suffices to prove  
that  P(a = oo) = 1, where a = l i m r ~  a t .  
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Since for any T >  0 and n > 1, x ~"/= (x~"l)t_<r satisfies the SDE 

dx~"t = a,(t,x~"~)dt + b,(t ,x("I)dwt,  X~o") = q, 

by I to 's  formula  we have (t A a ,  & min{ t , a ,} ) ,  

3~,̂ anQt. (niT ^o'n(x(n))x(tn~ = ~TQo(x(n))q  Jr- s ( X ) d s  --t- 2 

where 

.5~'["l(X(nl) = X~nlT ~ dQt~x'nt) ] k -flit x~") + 2x}nITQt(x(nI)a"(t'x(")) 

+ bT(t, x("))Ot(x("l)bn(t, x~"l). 

Note  that  on the set Is < a . ] ,  we have II x~ ")II -< n and 

a,(s, x {"t) = a(s, g,(x¢"l)) = a(s, x{"l), 

b.(s, x ~")) = b(s, g,(x("l)) = b(s, x¢"l). 

Also note that  X~o "l = q, Qo(x ~"l) ~ o~ o, which are actually independent  on n. Hence, by assumpt ion  (2.13) 
we get 

f O Aan (n) 2 ~t'~(nIV,,~r.~t̂ o.~n tv(nhv ("ll~t,,~. --< rlTQo(x(nI)rl + F,^~. + Gt^,,. x~ 11 ds  

IlbT(s,x~"I)QAx~"I)x~"l ll2ds + bX(s, xl"I)O~(x~"l)x~"ldw~ 

where 

~ A C r  n 

< F*  + G* Ilx~"iIt2I(s < a . ) d s  + Ht(n), 

F t * =  max Ft + rlTQo(X(n))rl, Gt*= max Gs 
O<_s<_t O<_s<_t 

H,(n) = - e  fo  1] bT(s, x(n))Q~(xtn))x~") II 2 l ( s  < ~r.) ds 

+ 2 f l  bT( S,X(n)]O,,~,tx("t~x(")Its, s , < a , )dws.  

(B.t) 

By the assumpt ion  there is a r a n d o m  variable c~ > 0 such that  inft,, •min(Qt(x (n)) > ~ > 0 a.s. Hence by (B.1) 
we know that  

1 iv(n)l v(n) 
il ~:~'~. li ~ < - ~',"2L e , ~ o . , ~  , ~ ,  ~ o °  

1 f~ x(n) < - [Ft* + Ht(n) + Gt* . . . .  112 ds]. (B.2) 
C¢ 

Note  that  by the well-known exponential  inequality for stochastic integrals (see, e.g. [6, Chap.  4] ) we know 
that  

,(oSU  H ,n, > n)< exp( n) 
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Consequently,  apply the Gronwal l  inequality to (B.2), we see that  

P ( l l x ~ , l l  2 >_ n 2 ) ~ 0  as n -~  ~ for any fixed t. 

Therefore, for any fixed t < T, 

P ( a r  < t) < P (a .  < t) = P(a .  < t, x (') II > '0 . . . .  ~ r  n - -  

- x t") P( l l  x f i ~ .  II -> - P ( a n  < t, ,^..11 >- n) < n) ~ O, a s  n o o .  

Hence P(aT < T) = 0 or P ( a r  = T) = 1, and consequently P (a  = oo) = 1. This completes the proof. 
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