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Abstract Estimation and control problems with binary-valued observations exist widely
in practical systems. However, most of the related works are devoted to finite impulse
response (FIR for short) systems, and the theoretical problem of infinite impulse response
(IIR for short) systems has been less explored. To study the estimation problems of
IIR systems with binary-valued observations, the authors introduce a projected recursive
estimation algorithm and analyse its global convergence properties, by using the stochastic
Lyapunov function methods and the limit theory on double array martingales. It is shown
that the estimation algorithm has similar convergence results as those for FIR systems
under a weakest possible non-persistent excitation condition. Moreover, the upper bound
for the accumulated regret of adaptive prediction is also established without resorting to
any excitation condition.
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1 Introduction

In many practical situations such as classification, quantization, stimulus-response problems,

the outputs of systems cannot be measured accurately, and what can be known is only whether

or the outputs belong to some known sets (see [15]). A typical situation is the binary-valued

observation (BVO for short) systems, which exist widely in application fields including neural

network (see [3]), sensor network (see [15]), gas content sensors in gas and oil industry (see

[12]), traffic condition indicators in the asynchronous transmission mode network (see [10]),

switching sensors for shift-by-wire in automotive applications (see [14]) and so on.

Compared to the traditional case where the true values of the system outputs can be ob-

served or estimated directly or indirectly, the estimation problems for BVO systems are more

complicated since one only has limited information available. Nevertheless, a great deal of

research efforts has been devoted to the investigation of BVO systems, which can be classified
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into two typical classes: Finite impulse response (FIR for short) systems and infinite impulse

response (IIR for short) systems.

First, for FIR systems, Wang et al. [14] considered BVO systems, which has inspired much

subsequent investigations. However, almost all the related works require either periodicity (see

e.g., [14, 19]), or independent and identically distributed (i.i.d. for short) property (see e.g., [9,

11]) or some strong persistence of excitation (PE for short) conditions (see e.g., [4, 15]) on the

inputs signals to ensure the strong consistency of parameter estimation algorithms. As pointed

out in [2], though these conditions may be satisfied for some open-loop or off-line identification,

they are difficult to be satisfied or verified for closed-loop system identification, since the inputs

are usually generated from non-stationary and strongly correlated signals of stochastic feedback

control systems. Recently, Zhang et al. [17] constructed a recursive projected Quasi-Newton

estimation algorithm, and obtained the strong consistency of this algorithm under the following

non-persistent excitation condition:

logn = o
(
λmin

{ n∑

i=1

φiφ
T
i

})
, a.s., (1.1)

which is equivalent to the weakest possible excitation condition for the least square (LS for short)

algorithm of linear stochastic regression systems (see [8]). In [17], the convergence of adaptive

predictors and the corresponding applications in adaptive control were also derived without any

excitation condition. Besides, the use of other methods, such as quadratic programming-based

method, can be found in [13].

Second, for IIR systems, there are extensive investigations and abundant results in the

traditional case where the true outputs can be observed directly or indirectly (see, e.g., [2]).

In particular, by establishing some limit theory on double array martingales, Guo et al. [6]

investigated the estimation of IIR systems with regular output observations and established

the strong consistency of a LS type estimation algorithm under a general non-PE condition.

Besides, other methods have also been used to estimate the parameters in IIR systems, for

examples, a stochastic approximation algorithm has been used for stochastic Wiener systems

(the noise term is outside the saturation function) (see [18]), and a kernel-based method has

been used with quantized observations in [1], however, Gaussian assumptions are needed for

either input signals or impulse responses.

It can be seen from the above overview that most of the existing works on estimation

of systems with BVO require quite strong input conditions to guarantee the convergence of

parameter estimates, and there are only a few results on adaptive prediction with BVO. To

overcome these limitations, we consider in this paper the adaptive estimation problems for

IIR systems with BVO under a more general input signal condition which does not exclude

applications to feedback signals, by using some basic methods and results developed in [6–7,

17].

The main contributions of this paper are as follows. We will introduce a projected recursive
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estimation algorithm for IIR systems with BVO, will prove the strong consistency of the algo-

rithm under a general non-PE condition on the input signals, and will show that the asymptotic

order of the accumulated regret of adaptive prediction can be bounded by O(log2a+1 n) without

any excitation condition. These results can be regarded as extensions of the related results on

FIR systems with BVO in [17], and are established by using both the stochastic Lyapunov

function methods and the limit theory on double array martingales developed in [6–7].

The paper is organized as follows. Section 2 gives the problem formulation for the estimation

of IIR systems with BVO; Section 3 introduces a projected recursive estimation algorithm;

Section 4 presents the main results of this paper, followed by Section 5 where the proof of the

main results is given; Section 6 concludes this paper with some remarks.

2 Problem Formulation

Consider the following IIR systems with BVO:

yk =

∞∑

i=1

biuk−i + vk, k ≥ 0, (2.1)

sk+1 = I(yk+1 ≥ ck) =

{
1, yk+1 ≥ ck;

0, yk+1 < ck,
(2.2)

where yk ∈ R
1, uk ∈ R

1, vk ∈ R
1 are the systems output, input and random noise, respectively,

sk is the BVO and ck is a time-varying threshold sequence. It is assumed that vk = uk = 0 for

all k < 0. The coefficients bi ∈ R
1, i ≥ 0 are unknown, and satisfy the following summability

condition:

∞∑

i=1

|bi| <∞. (2.3)

Remark 2.1 Let us consider the following stochastic systems with rational transfer func-

tions:

yk = A−1(z)C(z)uk−1 + vk, (2.4)

where A(z) = 1 + a1z + · · · + apz
p (ap 6= 0) is stable, i.e., A(z) 6= 0 for any |z| ≤ 1, C(z) =

c0+ c1z+ · · ·+ cqz
q, and ai, i = 1, · · · , p, and cj , j = 1, · · · , q, are unknown coefficients, z is the

backward-shift operator. Then (2.4) can be written as (2.1) and satisfies (2.3), because there

exists a λ ∈ (0, 1) such that |bi| = O(λi), i ≥ 0.

We introduce the unknown parameter vector

θ = [b1, b2, b3, · · · ]
T ∈ R

∞ (2.5)

and the corresponding regression vector

φk−1 = [uk−1, uk−2, uk−3, · · · ]
T ∈ R

∞, (2.6)
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so that (2.1) can be succinctly rewritten as

yk = θTφk−1 + vk, k ≥ 0. (2.7)

To analyse adaptive estimation problems for the above system, we introduce the following

notations and assumptions.

Throughout the paper, let ‖ · ‖ denote the Euclidean norm of vectors or matrices. The

H∞-norm is denoted by

‖g(z)‖∞ = ess sup
θ∈[0,2π]

|g(eiθ)|,

where g(z) is a complex function which is analytic in |z| < 1 and bounded almost everywhere

on |z| = 1. The L2-norm of g(z) is defined as

‖g(z)‖2 =
{ 1

2π

∫ 2π

0

|g(eiθ)|2dθ
} 1

2 .

The maximum and minimum eigenvalues of a square matrix X are denoted by λmax{X} and

λmin{X}, respectively.

Assumption 2.1 The system input uk ∈ Fk for k ≥ 0, and satisfies

sup
k≥0

|uk| ≤M <∞, a.s., (2.8)

where {Fk} is a sequence of non-decreasing σ-algebras, and M is a constant.

Assumption 2.2 The unknown parameter vector θ belongs to a known bounded convex set

D ⊆ R
∞ and we assume that

sup
x∈D

‖x‖ ≤ L <∞, (2.9)

where L is a constant.

Assumption 2.3 The threshold ck ∈ Fk for k ≥ 0, and satisfies

sup
k≥0

|ck| ≤ C <∞, a.s., (2.10)

where C is a constant.

Assumption 2.4 The random noise vk is integrable and Fk-measurable. For any k ≥ 1,

the conditional probability density function fk(·) of vk given Fk−1 is known and satisfies

inf
|x|≤LM+C

{fk(x)} > 0, k = 1, 2, · · · , a.s., (2.11)

where M,L and C are defined by (2.8)–(2.10), respectively.
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3 Estimation Algorithm

Let {pn} be any non-decreasing sequence of positive integers satisfying pn ≤ n for n > 0.

Set

θ(n) = [b1, · · · , bpn
]T (3.1)

and

φk(n) = [uk, · · · , uk−pn+1]
T, k = 0, 1, · · · , n, (3.2)

the estimate θ̂k(n) for θ(n) can be written as

θ̂k(n) = [ b1(k), · · · , bpn
(k) ]T, k = 0, 1, · · · , n. (3.3)

We will follow the ideas in the construction of the projected recursive estimation algorithm

for FIR systems in [17], for which, we need to introduce a suitable projection operator.

First, we need to introduce a set Dn ⊆ R
pn as follows:

Dn = {(x1, · · · , xpn
)T ∈ R

pn | (x1, · · · , xpn
, 0, 0, · · · )T ∈ D}, (3.4)

where the set D is defined in Assumption 2.2. Obviously, Dn is also a bounded convex set and

satisfies sup
x∈Dn

‖x‖ ≤ L <∞, ∀n > 0.

For the above defined convex set Dn ∈ R
pn and for any given positive definite matrix Q, we

define the corresponding projection operator as

Πn,Q{x} = argmin
ω∈Dn

‖x− ω‖Q, ∀x ∈ R
pn , (3.5)

where the weighted norm ‖ · ‖Q is defined as

‖y‖Q = (yTQy)
1
2 , ∀y ∈ R

pn . (3.6)

Now, for any given n > 0, the projected estimation algorithm is recursively defined for

0 ≤ k ≤ n as follows:

θ̂k+1(n) = Πn,P−1

k+1
(n){θ̂k(n) + βkbk(n)Pk(n)φk(n)ek+1(n)}, (3.7)

Pk+1(n) = Pk(n)− β2
kbk(n)Pk(n)φk(n)φ

T
k (n)Pk(n), (3.8)

ek+1(n) = sk+1 − 1 + Fk+1(ck − φτk(n)θ̂k(n)), (3.9)

bk(n) =
1

1 + β2
kφ

τ
k(n)Pk(n)φk(n)

, (3.10)

βk+1 = min
{
βk, inf

|x|≤LM+C
fk+2(x)

}
, (3.11)

where θ̂k(n) in (3.7) is the estimate for θ(n) at instant k, the initial value θ̂0(n) can be chosen

arbitrarily in Dn; Fk+1 in (3.9) is the conditional distribution function of vk+1 given Fk; β0
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can be chosen in
(
0,min

{
1, inf

|x|≤LM+C
f1(x)

})
arbitrarily; P0(n) = βI with real number β > 0

chosen arbitrarily; Πn,P
−1

k+1
(n) in (3.7) is the projection operator defined by (3.5), the well-

posedness of Πn,P
−1

k+1
(n) is ensured by the positive definite property of P−1

k+1(n), because by the

matrix inversion formula, P−1
k+1(n) can be explicitly written as

P−1
k+1(n) = P−1

k (n) + β2
kφk(n)φ

T
k (n). (3.12)

For convenience of analysis, we need to introduce the following notations to be used through-

out the sequel:

θ̃k(n) = θ(n)− θ̂k(n), (3.13)

γk = βk
−1, (3.14)

wk+1 = sk+1 − 1 + Fk+1(ck − φTk θ), (3.15)

ψk(n) = Fk+1(ck − φTk (n)θ̂k(n))− Fk+1(ck − φTk θ), (3.16)

δn =
( ∞∑

i=pn+1

|bi|
)2

, (3.17)

εk(n) =

∞∑

j=pn+1

bjuk−j+1. (3.18)

We also need the following notations for polynomials in the backward-shift operator z:

B(z) =

∞∑

i=1

biz
i, Bn(z) =

pn∑

i=1

biz
i, B̂n(z) =

pn∑

i=1

bi(n)z
i. (3.19)

4 Main Results

In this section, we will establish the strong consistency of the algorithm introduced in Section

3 under a weak non-persistent excitation condition on the input signals, and will analyse the

accuracy of the adaptive predictors without resorting to any excitation condition. The proof of

the main results will be given in the next section.

Theorem 4.1 Consider the system (2.1)–(2.2) under Assumptions 2.1–2.4. Then as n →

∞, the upper bound of parameter estimation error produced by the algorithm (3.7)–(3.11) is as

follows:

‖B̂n(z)−B(z)‖2∞ = O
( pn

λmin{P
−1
n (n)}

{pn logn+ δ
1
2
n n}

)
, a.s. (4.1)

Remark 4.1 The related result for FIR systems with BVO in [17] can be included if we

take pn as an upper bound for the order of the FIR system, since δn = 0 and ‖B̂n(z)−B(z)‖2

is bounded by ‖B̂n(z)−B(z)‖∞.
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Corollary 4.1 Let the conditions of Theorem 4.1 hold, {fk(x)} given in Assumption 2.4

satisfy

inf
|x|≤LM+C,k≥1

{fk(x)} > 0, a.s., (4.2)

and let |bi| = O(λi) hold for all i ≥ 0 and for some 0 < λ < 1. If we take pn = [loga n], a > 1,

where [x] is the integer part of x. Then as n→ ∞,

‖B̂n(z)−B(z)‖2∞ = O
( p2n logn

λmin

{
βI +

n−1∑
i=0

φi(n)φTi (n)
}
)
, a.s. (4.3)

Remark 4.2 From (4.3) we know that the estimation error will converge to zero if we have

p2n logn = o
(
λmin

{ n−1∑

i=0

φi(n)φ
T
i (n)

})
, a.s. (4.4)

This condition is much weaker than the usual PE condition, and is a natural generalization of

the non-PE condition (1.1) for FIR systems with BVO in [17].

Next, we analyse the accuracy of the adaptive prediction. Note that for any n > 0 and

0 ≤ k ≤ n, the system output yk in (2.1) can be rewritten as follows:

yk+1 = φTk (n)θ(n) + εk(n) + vk+1, k = 0, · · · , n, (4.5)

which can be regarded as a linear stochastic regression model of order pn plus a residual term

εk(n) defined in (3.18). Taking conditional expectations on both sides of (4.5), we can obtain

the best prediction for yk+1 in the mean square sense:

E(yk+1|Fk) = φTk (n)θ(n) + εk(n) + E(vk+1|Fk), k = 0, · · · , n. (4.6)

Replacing the unknown θ(n) in (4.6) by its estimate θ̂k(n) and omitting the residual term εk(n),

we can define the following adaptive predictor for the output:

ŷk+1(n) = φTk (n)θ̂k(n) + E(vk+1|Fk), k = 0, · · · , n. (4.7)

Usually, the difference between the best prediction and the adaptive prediction is referred to as

regret. From (4.6) and (4.7), the regret can be defined as follows:

Rk(n) = [E(yk+1|Fk)− ŷk+1(n)]
2

= {θ̃Tk (n)φk(n) + εk(n)}
2, k = 0, · · · , n. (4.8)

Naturally, we hope that the regret is small in a certain sense. Fortunately, this can be

realized by analysing the asymptotic upper bound for the accumulated regret as will be shown

in the following theorem.
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Theorem 4.2 Consider the system (2.1)–(2.2) under Assumptions 2.1–2.4. Then the ac-

cumulated regret has the following upper bound as n→ ∞ :

n∑

k=1

Rk(n) = O(γ2n{pn logn+ δ
1
2
nn}), a.s. (4.9)

According to Theorem 4.2, we can immediately deduce the following corollary.

Corollary 4.2 Let the conditions of Theorem 4.2 hold and {fk(x)} given in Assumption

2.4 satisfy (4.2). Then the following result holds as n→ ∞ :

n∑

k=1

Rk(n) = O(pn logn+ δ
1
2
nn), a.s. (4.10)

Remark 4.3 Consider the case in Remark 2.1. If we take pn = [loga n], a > 1, then it

follows from Corollary 4.2 that

n∑

k=1

Rk(n) = O(pn logn), a.s. (4.11)

The result (4.11) coincides with the related result for ARMAX models with regular outputs in

[7], where it has shown that the asymptotic order O(pn logn) of the accumulated regret is the

best possible.

To make the above results on the accumulated regret conveniently applied to adaptive

control, we need to get an upper bound for the following accumulated “synchronized regret”
n∑

k=1

Rk(k).

Theorem 4.3 Under the conditions of Corollary 4.2, let |bi| = O(λi) hold for all i ≥ 0 and

for some 0 < λ < 1. If we take pn = [loga n], a > 1, then the accumulated “synchronized regret”

of adaptive prediction has the following upper bound as n→ ∞ :

n−1∑

k=0

Rk(k) = O(p2n logn), a.s. (4.12)

5 Proof of the Main Results

We need the following lemmas to prove the main results in Section 4.

Lemma 5.1 (see [7]) Assume that {wn,Fn} is a martingale difference sequence satisfying

sup
j

E[‖wj+1‖
2 | Fj ] <∞ and ‖wn‖ = o(ϕ(n)), a.s., (5.1)

where ϕ(·) is a deterministic, positive, nondecreasing function and satisfies

sup
k

ϕ(ek+1)/ϕ(ek) <∞. (5.2)
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Let {fj(k)}, j, k = 1, 2, · · · be a Fj-measurable random sequence. Then for pn = O([loga n]), a >

1, the following property holds as n→ ∞ :

max
1≤k≤pn

max
1≤i≤n

∥∥∥
i∑

j=1

fj(k)wj+1

∥∥∥ = O(an log an) + o(anϕ(n) log logn), a.s., (5.3)

where

ai = max
1≤k≤pn

gi(k), gi(k) =
[ i∑

j=1

‖fj(k)‖
2 + 1

] 1
2

, g0(k) = 1. (5.4)

Lemma 5.2 (see [6]) Let {fk(n)}, 1 ≤ k ≤ n be a Fk-measurable random vector sequence

in R
pn , pn ≥ 1, and Mk(n) = γI +

k∑
j=1

fj(n)f
T
j (n), γ > 0, 1 ≤ k ≤ n. Then as n→ ∞,

n∑

k=1

fT
k (n)M−1

k (n)fk(n) = O(log+{det(Mn(n))} + 1), (5.5)

where det
(
Mn(n)

)
denotes the determinant of Mn(n), and log+{·} denotes the positive part of

log{·}.

Lemma 5.3 (see [7]) Assume that wn, ϕ(·), fk(n),Mk(n) and pn are the same as those in

Lemmas 5.1–5.2. Then as n→ ∞,

n∑

i=1

fT
k (n)M−1

k (n)fk(n)‖wk+1‖
2

= o(ϕ2(n) log logn) + O(pn log
+ λmax{Mn(n)}), a.s. (5.6)

Next, we present a fundamental lemma, which can be regarded as an extension of those in

Guo et al. [6], Guo [5] and Zhang et al. [17].

Lemma 5.4 Let Assumptions 2.1–2.4 be satisfied for the system (2.1)–(2.2). Then the

estimation error produced by the algorithm (3.7)–(3.11) satisfies the following property:

θ̃Tn (n)P
−1
n (n)θ̃n(n) +

(
1−

2

b

) n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n)]

2 = O(pn logn+ δ
1
2
nn), a.s., (5.7)

where b > 2 is a constant.

Proof For any given n > 0, we consider the stochastic Lyapunov function Vk(n) =

θ̃Tk (n)P
−1
k (n)θ̃k(n). By the properties of the projection operator, and by (3.5)–(3.8), (3.12)

and (3.15)–(3.16), we have

Vk+1(n) = ‖θ̃k+1(n)‖
2
P

−1

k+1
(n)

= ‖θ(n)−Πn,P−1

k+1
(n){θ̂k(n) + bk(n)βkPk(n)φk(n)ek+1(n)}‖

2
P

−1

k+1
(n)

≤ ‖θ(n)− θ̂k(n)− bk(n)βkPk(n)φk(n)ek+1(n)‖
2
P

−1

k+1
(n)



696 R. F. Dai and L. Guo

= {θ̃k(n)− bk(n)βkPk(n)φk(n)[ψk(n) + wk+1]}
TP−1

k+1(n)

{θ̃k(n)− bk(n)βkPk(n)φk(n)[ψk(n) + wk+1]}

= θ̃Tk (n)P
−1
k+1(n)θ̃k(n)− 2bk(n)βk θ̃

T
k (n)P

−1
k+1(n)Pk(n)φk(n)ψk(n)

− 2bk(n)βkθ̃
T
k (n)P

−1
k+1(n)Pk(n)φk(n)wk+1

+ b2k(n)β
2
kψ

2
k(n)φ

T
k (n)Pk(n)P

−1
k+1(n)Pk(n)φk(n)

+ b2k(n)β
2
kφ

T
k (n)Pk(n)P

−1
k+1(n)Pk(n)φk(n)w

2
k+1

+ 2b2k(n)β
2
kψk(n)φ

T
k (n)Pk(n)P

−1
k+1(n)Pk(n)φk(n)wk+1. (5.8)

We first simplify the terms in (5.8). By (3.10) and (3.12), we have

θ̃Tk (n)P
−1
k+1(n)θ̃k(n) = θ̃Tk (n)P

−1
k (n)θ̃k(n) + β2

k[θ̃
T
k (n)φk(n)]

2, (5.9)

bk(n)P
−1
k+1(n)Pk(n)φk(n) = φk(n). (5.10)

Substituting the above into (5.8), we know that

Vk+1(n) ≤ Vk(n) + β2
k[θ̃

T
k (n)φk(n)]

2

− 2βkθ̃
T
k (n)φk(n)ψk(n)

− 2βkθ̃
T
k (n)φk(n)wk+1

+ bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)ψ

2
k(n)

+ bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)w

2
k+1

+ 2bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)ψk(n)wk+1. (5.11)

Moreover, by the definition of ψk(n), we have

|ψk(n)|
2 ≤ 1, (5.12)

which implies that

bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)ψ

2
k(n) ≤ bk(n)β

2
kφ

T
k (n)Pk(n)φk(n). (5.13)

By the differential mean value theorem, from (3.11) and (3.16), we see that

|ψk(n)| ≥ βk|θ̃
T
k (n)φk(n) + εk(n)|. (5.14)

By (3.16) and the differential mean value theorem again, we know that ψk(n) and [θ̃Tk (n)φk(n)+

εk(n)] have the same sign, and from (5.14) we get

−2βk[θ̃
T
k (n)φk(n) + εk(n)]ψk(n) ≤ −2β2

k[θ̃
T
k (n)φk(n) + εk(n)]

2. (5.15)

Substituting this and (5.13) into (5.11), and summing both sides of (5.11) from k = 0 to n− 1,

we obtain

Vn(n) ≤ V0(n) +

n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n)]

2 − 2

n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n) + εk(n)]

2
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+ 2

n−1∑

k=0

βkψk(n)εk(n) +

n−1∑

k=0

bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)

− 2

n−1∑

k=0

βkθ̃
T
k (n)φk(n)wk+1

+

n−1∑

k=0

bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)w

2
k+1

+ 2

n−1∑

k=0

bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)ψk(n)wk+1. (5.16)

We now estimate the right-hand side of (5.16) term by term. By (3.17)–(3.18) we have

n∑

k=0

ε2k(n) ≤

n∑

k=0

( ∞∑

j=pn+1

|bj||uk−j+1|
)2

= O(δnn). (5.17)

Moreover, by this, the boundedness of both βk and ψk(n), and the Schwarz inequality, we have

n−1∑

k=0

βkψk(n)εk(n) = O
( n−1∑

k=0

εk(n)
)
= O

([
n

n−1∑

k=0

ε2k(n)
] 1

2
)
= O(δ

1
2
n n). (5.18)

By the elementary inequality 2xy ≤ x2

b
+ by2, we know that for any given b > 2 we have

−4

n−1∑

k=0

β2
k θ̃

T
k (n)φk(n)εk(n) ≤

2

b

n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n)]

2 + 2b

n−1∑

k=0

β2
kε

2
k(n). (5.19)

Note that β2
k ≤ 1, from (5.17) and (5.19) we obtain

− 2

n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n) + εk(n)]

2

≤
(2
b
− 2

) n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n)]

2 + (2b− 2)

n−1∑

k=0

β2
kε

2
k(n)

=
(2
b
− 2

) n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n)]

2 +O(δnn). (5.20)

We proceed to estimate the fifth term in (5.16). Let fk(n) = βkφk(n) in Lemma 5.2, since

bk(n) < 1, we obtain

n−1∑

k=0

bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)

≤

n−1∑

k=0

fT
k (n)Pk(n)fk(n)

= O(log+{det(P−1
n (n))})

= O(pn log+ λmax{P
−1
n (n)}). (5.21)
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Moreover, by (5.21) and the fact that bk(n)β
2
kφ

T
k (n)Pk(n)φk(n) < 1, we have

n−1∑

k=0

[bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)]

2 = O(pn log+ λmax{P
−1
n (n)}). (5.22)

Next, we estimate the sixth term in (5.16). By the definition of wk+1 we obtain

E(wk+1|Fk)

= E[sk+1|Fk]− E[P (yk+1 ≥ ck|Fk)|Fk]

= E[I(yk+1 ≥ ck)|Fk]− E[E(I(yk+1 ≥ ck)|Fk)|Fk]

= 0, (5.23)

which implies that {wk,Fk} is a martingale difference sequence. Since |wk+1| ≤ 1, we know

that

|wn| = o([log log(n+ e)]
1
2 ) and sup

j

E[|wj+1|
2 | Fj ] <∞, a.s. (5.24)

Consequently, by (5.24) and Lemma 5.1, we get

n−1∑

k=0

βkθ̃
T
k (n)φk(n)wk+1

= O
({ n−1∑

k=0

[βkθ̃
T
k (n)φk(n)]

2
} 1

2
)
+ o

({ n−1∑

k=0

[βkθ̃
T
k (n)φk(n)]

2
} 1

2

[log logn]
3
2

)

= o
( n−1∑

k=0

[βkθ̃
T
k (n)φk(n)]

2
)
+ o([log logn]3), a.s. (5.25)

We now estimate the seventh term in (5.16). Note that bk(n) < 1, by (5.24) and Lemma 5.3,

we see that

n−1∑

k=0

bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)w

2
k+1

= O(pn log
+ λmax{P

−1
n (n)}) + o([log logn]2), a.s. (5.26)

As for the last term in (5.16), by (5.12), (5.22) and Lemma 5.1 again, we know that

n−1∑

k=0

bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)ψk(n)wk+1

= o
( n−1∑

k=0

[bk(n)β
2
kφ

T
k (n)Pk(n)φk(n)]

2
)
+ o([log logn]3)

= o(pn log+ λmax{P
−1
n (n)}) + o([log logn]3), a.s. (5.27)

Note that by (3.2) and (3.12), we have

log+ λmax{P
−1
n (n)}
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≤ log+ tr
[
P−1
0 (n) +

n−1∑

i=0

β2
i φi(n)φ

T
i (n)

]

= log+
[
tr(P−1

0 (n)) +

n−1∑

i=0

β2
i

pn−1∑

j=0

u2i−j

]

= O(log+(pn + pnn))

= O(log n), a.s. (5.28)

Finally, substituting (5.18), (5.20)–(5.21) and (5.25)–(5.28) into (5.16), we have

θ̃Tn (n)P
−1
n (n)θ̃n(n) +

(
1−

2

b

) n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n)]

2

= O(pn logn+ (log logn)2 + (log logn)3 + δ
1
2
nn)

= O(pn logn+ δ
1
2
n n), a.s. (5.29)

Hence Lemma 5.4 is true.

Proof of Theorem 4.1 Noticing that

λmin{P
−1
n (n)}‖θ̃n(n)‖

2 ≤ θ̃Tn (n)P
−1
n (n)θ̃n(n), (5.30)

it follows from this and Lemma 5.4 that

‖θ(n)− θ̂n(n)‖
2 = O

( 1

λmin{P
−1
n (n)}

{pn logn+ δ
1
2
nn}

)
, a.s. (5.31)

Combining (3.17), (3.19), (3.1) and (3.3) with (5.31), we have

‖B̂n(z)−B(z)‖2∞

= ‖B̂n(z)−Bn(z) +Bn(z)−B(z)‖2∞

≤ 2‖B̂n(z)−Bn(z)‖
2
∞ + 2‖Bn(z)−B(z)‖2∞

≤ 2
[ pn∑

i=1

|bi(n)− bi|
]2

+ 2
[ ∞∑

i=pn+1

|bi|
]2

≤ 2pn

pn∑

i=1

[bi(n)− bi]
2 + 2δn

≤ 2pn‖θ(n)− θ̂n(n)‖
2 + 2δn

= O
( pn

λmin{P
−1
n (n)}

{pn logn+ δ
1
2
nn}

)
, a.s., (5.32)

where the last equality holds because δn = O(1) and λmin{P
−1
n (n)} = O(n).

Proof of Corollary 4.1 By the fact that δk is non-increasing, and by the choice of pn and

property of |bi|, from (3.17) we have

δ
1
2
nn ≤

n∑

k=1

δ
1
2

k = O
( n∑

k=1

λpk

)
= O

( n∑

k=1

k(log λ)(loga−1 k)
)
<∞. (5.33)
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Noticing that (4.2) implies βk 9 0, by Theorem 4.1 and (5.33), we see that the assertion of

Corollary 4.1 holds.

Proof of Theorem 4.2 From Lemma 5.4 we know that

n−1∑

k=0

β2
k[θ̃

T
k (n)φk(n)]

2 = O(pn logn+ δ
1
2
nn), a.s. (5.34)

Noting that [θ̃Tn (n)φn(n)]
2 = O(pn), by the non-increasing property of βk, and βn = γ−1

n , we

have

n∑

k=1

[θ̃Tk (n)φk(n)]
2 = O(γ2n{pn log n+ δ

1
2
nn}), a.s. (5.35)

Combining this with (5.17), it is not difficult to see that

n∑

k=1

Rk(n) = O(γ2n{pn logn+ δ
1
2
n n}), a.s. (5.36)

Proof of Theorem 4.3 Since βk 9 0, it is not difficult to see from (5.33) and (5.35) that

n∑

k=1

[θ̃Tk (n)φk(n)]
2 = O(loga+1 n), a.s. (5.37)

Note that by the definition of pk, pk = [loga k], a > 1. Let us denote the “inverse” function

of pk as qk = [ek
1
a ]. Now for any integer k ≥ 1, there exists an integer i ≥ 0 such that

qi ≤ k < qi+1. (5.38)

It is not difficult to show that pk = i for all suitably large integer k or i, hence by the definition

of θ̃k(n) and φk(n), we know that

θ̃Tk (k)φk(k) = θ̃Tk (qi+1 − 1)φk(qi+1 − 1). (5.39)

Now, for any n > 1, let m be the positive integer such that qm ≤ n < qm+1 , by (5.37) and

(5.39), we obtain

n−1∑

k=0

[θ̃Tk (k)φk(k)]
2

=
m∑

i=0

qi+1−1∑

k=qi

{θ̃Tk (qi+1 − 1)φk(qi+1 − 1)}2 +O(1)

= O
(m−1∑

i=0

loga+1(qi+1)
)

= O(m loga+1 qm)

= O(p2n log n), a.s. (5.40)
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Moreover, by (3.17)–(3.18), the choice of pn and property of |bi|, we have

n−1∑

k=0

ε2k(k)

≤

n−1∑

k=0

( ∞∑

j=pk+1

|bj ||uk−j+1|
)2

= O
( n−1∑

k=0

δk

)

= O
( n−1∑

k=0

λ2pk

)

= O
( n−1∑

k=0

k2(log λ)(loga−1 k)
)

= O(1). (5.41)

Therefore, by (5.40)–(5.41) we have the desired result

n−1∑

k=0

Rk(k)

≤ 2
{ n−1∑

k=0

[θ̃Tk (k)φk(k)]
2 +

n−1∑

k=0

ε2k(k)
}

= O(p2n logn), a.s. (5.42)

6 Conclusions

This paper has considered the estimation problems for IIR systems with BVO, by using

a projected recursive estimation algorithm. The convergence and the convergence rate of the

estimation algorithm have been established under a general and weakest possible excitation

condition. Moreover, the accumulated regret of adaptive prediction has been shown to be

bounded by O(log2a+1 n), which implies that the averaged regret converges to 0. For further

investigation, it will be interesting to consider adaptive control problems, and to extend the

related results to IIR systems with more general observations, such as saturated observations

recently considered in [16].
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