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I. Background



Feedback

• Needed in almost all purposive behaviors.

• A basic systems principle and a core concept in

automatic control.

• Why feedback ? Uncertainties always exist in

modeling, controlling and running of practical

systems.
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Feedback Theory

The feedback control of uncertain dynamical systems has
been a central theme in control theory, and tremendous
progress has been made in, e.g., robust, adaptive, nonlinear
and stochastic control, etc.

Typical techniques developed include:
PID control, H∞ control,
Bode’s design method, Self-tuning regulators,
Internal model principle, MRAC,
Gain scheduling, high-gain, Small-gain theorems,
Nonlinear damping, Kharitonov theorem,
Stochastic dynamic programing, Kalman filtering,
Geometric control theory, µ-design,
LMI, MPC, Back-stepping method,
ISS, passivity theory Neural network and Fuzzy control,
Sliding mode control, Dual principle,
Absolute stability, Active-disturbance rejection control,
.........



Expectations from Theory

• Any theory needs assumptions, and any mathematical
models are simplifications/approximations of real systems.

• “Make everything as simple as possible, but not
simpler”(A.Einstein)

• While it may be necessary to have a theory established
for simplified models, one may naturally expect that a
theory can give the boundaries of its applicability to real
systems, which are mostly nonlinear with uncertainties.

G(·) = g(θ, ·) + f(·), f(·) = [G(·)− g(θ, ·)]



Some Challenges(I)

• Implementation of Control: Feedback cannot be
implemented instantaneously in general, due to sensing,
sampling, communication, computation, actuation and
so on. This turns out to be quite challenging in theory.

• Identification for Control: Is identification really
necessary for control? How much uncertainty should at
least be reduced by modeling and identification, in
order that the remaining uncertainty can be effectively
dealt with by feedback?



Some Challenges (II)

• Model-Based Control: Can we say anything about the
maximal nonlinear uncertainty that can be dealt with
by controllers designed based on a given model class ?

G(·) = g(θ, ·) + f(·), f(·) = [G(·)− g(θ, ·)]

• Data-Driven Control: Do we know any limitations of
controllers that are designed on the basis of the online
observed or measured data ?



Some Challenges(III)

• Adaptive Nonlinear Control: Can we design a
stabilizing adaptive controller for discrete-time
uncertain systems with nonlinearities having a growth
rate faster than linear? If cannot, is it due to our
personal incapability or due to fundamental limitations
of the feedback mechanism ?

• Hybrid Nonlinear Control: Can we have some concrete
results on sampled-data control of nonlinear uncertain
systems, when the sampling rate is prescribed ?



Related Problems

• How much uncertainty can the feedback mechanism
deal with ?

• What are the limitations of the feedback mechanism?

• How to construct the most powerful feedback law?

• How does uncertainty affect the feedback performance?



Related Directions

• Much progress has been made in

Robust control

Adaptive control

· · · · · ·
• Few results address

the maximum capability and limitations

of the feedback mechanism



Robust Control

• Model = Nominal + “ball”

• Control law design

Based on the nominal model and from a given class
Measurements are not used to reduce the “Ball”

Related but essentially different
in both problems and results



Adaptive Control

• A standard situation

• Typical Design Methods

Certainty equivalence principle

Lyapunov function based

Does not address the
maximum capability and limitations



II. Problem Formulation



Feedback and Information

Information === prior + posterior

= I0 + It= I0 + It= I0 + It

I0I0I0 === prior knowledge about the plant

ItItIt === posterior knowledge about the plant

= {y0, y1, · · · , yt}= {y0, y1, · · · , yt}= {y0, y1, · · · , yt} (Observations/Data)



Definition of Feedback

• Feedback signal ututut : there is a measurable

mapping

ft : Rt+1 → R1ft : Rt+1 → R1ft : Rt+1 → R1

such that

ut = ft(y0, y1, · · · , yt)ut = ft(y0, y1, · · · , yt)ut = ft(y0, y1, · · · , yt)

• Feedback law uuu :

u = {ut, t ≥ 0}u = {ut, t ≥ 0}u = {ut, t ≥ 0}
• Feedback mechanism UUU :

U = {u |u is any feedback law}U = {u |u is any feedback law}U = {u |u is any feedback law}



Description of Uncertainty

• Uncertainty is mathematically described by a

set, either parametric or functional.

• The control of uncertain systems is by

definition the control of all possible systems

related to this set.

(Plenty but not Unnecessary)



Problem Formulation

sup
F

{
size(F ) : inf

u∈U
sup
f∈F

sup
t≥0

|yt(f, u)| < ∞, ∀ y0 ∈ R
}

sup
F

{
size(F ) : inf

u∈U
sup
f∈F

sup
t≥0

|yt(f, u)| < ∞, ∀ y0 ∈ R
}

sup
F

{
size(F ) : inf

u∈U
sup
f∈F

sup
t≥0

|yt(f, u)| < ∞, ∀ y0 ∈ R
}



Basic Questions

• How to properly define the uncertainty set F?

• How to characterize the limits of feedback?

• How to construct the most powerful feedback?

• How to analyze such dynamical systems?

(cont.)



Basic Questions

• How to properly define the uncertainty set F?

• How to characterize the limits of feedback?

• How to construct the most powerful feedback?

• How to analyze such dynamical systems?

Even if a nonlinear feedback law works well

both numerically and practically, the last question

may still not be easy in general, just like the case

of self-tuning regulators.



On Impossibility Theorems

A Basic Fact: Let F0 and F be two classes of uncertain
systems satisfying

F0 ⊂ F .

If the system class F0 cannot be stabilized by the feedback
mechanism, then neither for the larger class F .



Some Known Impossibility Theorems

• Bode Integral Theorem on Sensitivity Functions (1940);

• Shannon Channel Coding Theorem (1948) ;

• Cramér-Rao Bound in Statistics (1945);

• Heisenberg Uncertainty Principle in Physics (1927);

• Gödel Incompleteness Theorem in Mathematics (1931);

• Arrow Impossibility Theorem in Economics (1951).

• ... ... ...



Feedback Capability

• Fundamental Limitations: Can prevent us from wasting
time and energy on searching for an expected feedback
controller that does not exist, and alert us of the danger
of being unable to control uncertain systems when the
size of the uncertainty reaches the limit established.

• Maximum Capability: Can encourage us in improving
the controller design to reach or approximate the
maximum capability, and may also guide and help us in
relaxing the task and efforts in mathematical modeling
and system identification.



A Basic Model Class

yt+1 = f(yt) + ut + wt+1, y0 ∈ R1yt+1 = f(yt) + ut + wt+1, y0 ∈ R1yt+1 = f(yt) + ut + wt+1, y0 ∈ R1

where

• {yt}{yt}{yt} and {ut}{ut}{ut} are output and input sequences;

• {wt}{wt}{wt} is any bounded disturbance (or white

noise);

• f(·)f(·)f(·) belongs to a class FFF with uncertainty.

Question: How much uncertainty in f(·) ∈ Ff(·) ∈ Ff(·) ∈ F can

be dealt with by feedback?



Uncertainty and Nonlinearity

• Uncertainty:

Parametric: the uncertainty can be described by a
finite number of unknown parameters,
either nonlinearly parametric f(θ, x) or
linearly parametric θτf(x) ;

Nonparametric: Functional uncertainty.

• Nonlinearity:

Growth Rate: f(x) = Θ(|x|b), b ≥ 0f(x) = Θ(|x|b), b ≥ 0f(x) = Θ(|x|b), b ≥ 0, x →∞,
which means that there exist positive constants c1 and c2

such that c1 ≤ |f(x)|/|x|b ≤ c2 for all sufficiently large x.



Sensitivity Function(SF)

∂f(θ, x)
∂θ

∂f(θ, x)
∂θ

∂f(θ, x)
∂θ

• Remark: If the change of θ has no “significant” influence
on f(θ, x), then there is no need to care about it. In fact, the
growth rate of SF is more relevant than the range of the
parameter change, and the following quantity will play a key
role:

Cf , lim sup
x→∞

log |∂f(θ, x)
∂θ

|/log x



III. Some Fundamental Theorems



Case I. Polynomial Criteria



The Critical Value b = 4

yt+1 = f(θ, yt) + ut + wt+1.

Assume that the sensitivity function satisfies

∂f(θ, x)
∂θ

= Θ(|x|b), x →∞, b ≥ 0,

where the unknown parameter θ ∈ R1 lies in a compact set
and {wt} is bounded disturbance.

Theorem (b = 4 is critical):
The above class of systems is globally stabilizable by feedback
if and only if b < 4b < 4b < 4.

(Li & Guo, IEEE-TAC, 2011)



A Corollary

Linear parameter case:

yt+1 = θf(yt) + ut + wt+1.

Assume that for some b ≥ 0,

f(x) = Θ(|x|b), x →∞,

and that θ ∈ R1 is unknown and {wt} is either white noise or
any bounded noise.

Theorem (b = 4 is critical):
The above class of systems is globally stabilizable by feedback
if and only if b < 4b < 4b < 4.

(Guo, IEEE-TAC, 1997; Li & Xie, SCL, 2006)



Why b = 4 ?

• The noise effect is essential. If there were no noise, we
would have θ = (y2 − u1)/f(y1), and consequently, the
systems could be stabilized trivially, regardless of the
value of b > 0.

• In the noise case where {wt} is assumed to be white ,
f(yt) = yb

t , the “best” estimate (LS) θ̂t will give a natural
feedback ut = −θ̂ty

b
t , and so

yt+1 = θ̃ty
b
t + wt+1.

Notice that the estimation error θ̃t , θ − θ̂t will decrease
at a rate roughly 1/yb

t−1, as long as {yb
t} increases fast

enough. This will imply that the critical case for
stability is b = 4.



Why b = 4 ? (Cont’d)

• The rigorous analysis for the general case hinges on the
following fact: for any positive sequence {St} with

St+1 ≤ C +
t∑

i=1

δi

(
Si

Si−1

)b

,
∞∑

i=1

δi < ∞,

{St} is bounded provided that b < 4.

• The above result is connected to the following fact:

z2 − b1z + b1 > 0, ∀z ∈ (1, b1)

if and only if b1 < 4.



The Critical Value b = 3

Additional uncertainty in the input channel:

yt+1 = θ1f(yt) + θ2ut + wt+1, y0 ∈ R1,

• (θ1, θ2) belongs to a compact set with θ2 6= 0; {wt}
is any bounded noise.

• f(x) = Θ(|x|b) as |x| → ∞ with b ≥ 0.

Theorem The above uncertain dynamical system

is globally stabilizable by the feedback mechanism if

and only if b < 3b < 3b < 3.

(Li & Guo, Automatica, 2010)



A General Polynomial Criterion

Consider additive nonlinear regression:

yt+1 = θτf(yt) + ut + wt+1 (1)

• θ ∈ Θ , {θ ∈ Rp : ‖θ‖ ≤ R} is a p-dimensional

unknown parameter vector;

• {wt} is any bounded disturbance sequence, or a

Gaussian white noise sequence;

• f(yt) , [f1(yt), · · · , fp(yt)]
τ belongs to:

F(b) =
{
f(·) : fi(x) = Θ(|x|bi), as x →∞}

where b = (b1 · · · bp), with b1 > b2 > · · · > bp > 0.



With the exponents bi introduced as above, define

a characteristic polynomial:

P (z) = zp+1 − b1z
p + (b1 − b2)z

p−1 + · · ·+ (bp−1 − bp)z + bp

Theorem Let f ∈ F(b) be a nonlinear function.

Then the above uncertain nonlinear dynamical sys-

tem with θ ∈ Θ is globally stabilizable by the feed-

back mechanism if and only if

P (z) > 0, ∀ z ∈ (1, b1)

(Xie and Guo, 1999; Li, Xie and Guo, 2006; Li and James, 2013)



Some Corollaries

Consider

yt+1 = θ1yt
b1 + θ2yt

b2 · · · · · ·+ θpyt
bp + ut + wt+1

with b1 > b2 > · · · > bp > 0. The polynomial criterion shows:

• For any {bi} with b1 ≥ 4, the system is not globally
stabilizable;

• For any {bi} with
∑p

i=1 bi < 4, the system is globally
stabilizable;

• For any b1 > 1, there always exit p and {bi} such that the
corresponding system is not globally stabilizable.

=⇒ The class of uncertain nonparametric functions with
growth rate faster than linear, is not globally stabilizable !



A General Characterization

General nonlinearly parameterized model:

yt+1 = f(θ, yt) + ut + wt+1 (2)

• θ ∈ {θ ∈ Rp : ‖θ‖ ≤ R} is unknown vector;

• {wt} is any bounded noise sequence;

• f(·, ·) belongs to:

F(b) =
{
f(·, ·) : f ′i(θ, x) = Θ(|x|bi), as x →∞}

where f ′i(·, ·) 4
= ∂f(θ,·)

∂θi
is the sensitivity function

of the i-th component of f(·, ·), and b = (b1 · · · bp).



Consider again the characteristic polynomial:

P (z) = zp+1 − b1z
p + (b1 − b2)z

p−1 + · · ·+ (bp−1 − bp)z + bp

Introduce

Ω = {b = (b1, · · · , bp) : b1 > b2 > · · · > bp > 0}

Define two sets:

Ωs , {b ∈ Ω : P (z) > 0, ∀ z ∈ (1, b1)}
Ωu , {b ∈ Ω : b1 ≥ 4}

It can be shown that

Ωs ⊂ Ωc
u



Possibility vs. Impossibility

• The above class of uncertain nonlinear systems is
globally stabilizable by the feedback mechanism
provided that b ∈ Ωs.

• The above class of uncertain nonlinear systems is not
globally stabilizable by the feedback mechanism as long
as b ∈ Ωu.

Now, let’s take Ωα as any set of parameter b such that

Ωs ⊂ Ωα ⊂ Ωc
u.



A General Characterization

Theorem Consider the uncertain system with

f(·, ·) ∈ F(b). Then F(b) can be decomposed as

F(b) =
⋃
α

Fα(b),

where Fα(b) ⊂ F(b) are disjoint and nonempty
families of functions for different α, such that for
each f(·, ·) ∈ Fα(b), the corresponding system is
stabilizable by feedback if and only if b ∈ Ωα.

(Li & Guo, IEEE-TAC, 2011)





Rationale behind Impossibility

Let θ be a random vector independent of {wt}.
Consider

yt+1 = f(θ, φt) + wt+1,

where φt depends on {yi, ui, i ≤ t}, and {wt} is white

noise with variance σ2
w. Let

f̂(θ, φt) , E[f(θ, φt)|Fy
t ], Fy

t , σ{y1, · · · , yt}.
Then, we have

E[y2
t+1|Fy

t ] = E[(f(θ, φt)− f̂(θ, φt))
2|Fy

t ] + f̂ 2(θ, φt) + σ2
w.

How to get a universal and valuable lower bound?



Conditional C-R inequality

Let θ and x be some random vectors and p(x, θ) the joint
p.d.f.. Under some regularity conditions, for any measurable
function g(x, θ),

Ex{[g(x, θ)− Exg(x, θ)][g(x, θ)− Exg(x, θ)]T }

≥ Ex
∂g(x, θ)

∂θ

{
−Ex

[
∂2 log p(x, θ)

∂θ2

]}−1

ET
x

∂g(x, θ)
∂θ

,

where Exy , E{y|x}.

(cont.)



Conditional C-R inequality

Let θ and x be some random vectors and p(x, θ) the joint
p.d.f. Under some regularity conditions, for any measurable
function g(x, θ),

Ex{[g(x, θ)− Exg(x, θ)][g(x, θ)− Exg(x, θ)]T }

≥ Ex
∂g(x, θ)

∂θ

{
−Ex

[
∂2 log p(x, θ)

∂θ2

]}−1

ET
x

∂g(x, θ)
∂θ

,

where Exy , E{y|x}.

How to estimate the Fisher information matrix?

How to realize the above idea in a deterministic setting?



Stochastic Imbedding

Deterministic
Framework → Imbed

(Ω,F , P ) → Stochastic
Framework

P (D) > 0! q
&%

'$
- θ(ω), {wt(ω)}ω D

Deterministic
Framework ← Exist

θ, {wt} ← Stochastic
Framework

(Remark: The stochastic imbedding may not be effective
for establishing possibility results, due to the well-known
“exceptional set” problem).



Parameter Distribution Imbedding

Take θ to have the following spherical p.d.f.:

p(θ) =





c(2−1R2 − ‖θ‖2) if 0 ≤ ‖θ‖ ≤ R/2;

c(R− ‖θ‖)2 if R/2 ≤ ‖θ‖ ≤ R;

q
"!

#Ã

θ1 θ1

θ1 θ1

θc R ⇒ ‖θ‖ ≤ R



Noise Distribution Imbedding

Take {wt} to be i.i.d and independent of θ with p.d.f.

qt(x) =
t√
2π

exp
(
−x2t2

2

)



Lower Bound to Conditional Variance

With the above stochastic imbedding, the Fisher
information matrix can be calculated, leading to

Ex[f(θ, φt)− f̂(θ, φt)]2 ≥ 1
2

Eτ
xf ′(θ, φt)P−1

t (θ)Exf ′(θ, φt),

where x , {y1, · · · , yt} and

Pt+1(θ) , KI + M1(t + 1)4
t∑

i=0

E[f ′(θ, φi)f
′τ (θ, φi)|Fy

t ].

which is a key step in establishing the impossibility, followed
by a meticulous analysis of the involved nonlinear dynamical
inequalities, and finally arriving at a connection with the
polynomial criterion.



Case II. The Critical Value 3
2 +

√
2



The Critical Value 3
2 +

√
2

Consider the following nonparametric control system

yt+1 = f(yt) + ut + wt+1, y0 ∈ R1

with unknown function f(·) ∈ F = {all R1 → R1 mappings}.
The Lipschitz norm on F :

‖f‖ = sup
x6=y

|f(x)− f(y)|
|x− y|

The set of uncertain functions:

F(L) = {f ∈ F : ‖f‖ ≤ L}

L: Serves as a measure of uncertainty



Theorem. The above class of uncertain dynamical
systems described by F(L) is globally stabilizable

by the feedback mechanism if and only if

L <
3
2

+
√

2L <
3
2

+
√

2L <
3
2

+
√

2

• If L < 3
2

+
√

2, then there is a feedback law {ut} such that the

system is globally stable for any f ∈ F(L);

• If L ≥ 3
2

+
√

2, then for any feedback law {ut}, there is at least

one system f(·) ∈ F(L), such that the corresponding closed-loop

system is unstable.

(Xie & Guo, IEEE-TAC, 2000)



Why 3
2 +

√
2 is critical?

Let {yt} be any sequence satisfying

|yt+1 − (center)t| ≤ L|yt − (neighbor)t−1|,
where

(center)t =
1

2
(min
0≤i≤t

yi+max
0≤i≤t

yi), (neighbor)t−1 = argmin
0≤i≤t−1

|yt−yi|.

Then, it follows that

{yt} bounded ⇐⇒ L <
3

2
+
√

2



Another Related Fact

All solutions of

an+1 = L(an − an−1) +
1

2
an

either converge to zero or oscillate about zero:

⇐⇒L <
3

2
+
√

2.



A General Theorem

Let {g(θ, ·), θ ∈ Θ} be a model class with modeling error
f(·) ∈ F(L) plus a bounded disturbance:

yt+1 = g(θ, φt) + f(yt) + wt+1, t ≥ 0,

where φt = [yt, yt−1, · · · , yt−p+1, ut, ut−1, · · · , ut−q+1]τ . Assume
that the systems is “minimum phase” and that the SF of
g(·, ·) is bounded by linear growth, etc. We have

Theorem. The above uncertain system with {(θ, f) ∈
(Θ,F(L)} is globally stabilizable by the feedback mechanism
if and only if

L < 3
2 +

√
2

(Huang and Guo, Automatica, 2012)



Modeling vs. Feedback

Let G(·) be a real uncertain system and g(θ, ·) be a model
class, then

G(·) = g(θ, ·) + f(·), f(·) , G(·)− g(θ, ·)
• Modeling and feedback are two main techniques in

dealing with uncertainties, and the above theorem
quantitatively shows how modeling and feedback are
complementary in control systems design.

• In particular, the limitations of feedback may be
compensated by improving the quality of modeling, by
either understanding more about the concrete system
mechanism, or choosing a more powerful parametric
structure, or by both.



Case III. Sampled-Data Feedback



Sampled-Data Feedback

Consider continuous-time nonlinear control systems:

ẋt = f(xt) + ut, t ≥ 0, x0 ∈ R1ẋt = f(xt) + ut, t ≥ 0, x0 ∈ R1ẋt = f(xt) + ut, t ≥ 0, x0 ∈ R1, (3)

where the uncertain function fff is locally Lipschitz.

The sampled-data feedback with sampling period hhh is
defined simply by

ut = ukh, t ∈ [kh, (k + 1)h)

ukh = gk(x0, xh, ..., xkh), ∀k ≥ 0

where gk(·) can be any Lebesgue measurable function.



Example 1. Stabilizing Feedback Under Sampling

Let θ be a scalar unknown parameter in

ẋt = θg(xt) + ut, t ≥ 0, x0 ∈ R1ẋt = θg(xt) + ut, t ≥ 0, x0 ∈ R1ẋt = θg(xt) + ut, t ≥ 0, x0 ∈ R1, (4)

where ggg is locally Lipschitz and has the upper bound
|g(x)| ≤ M |x|b, b ≥ 1, x ∈ R. It is easy to show that the
following continuous-time feedback is globally stabilizing:

ut = −sgn(yt)|yt|b+ε, ∀ε > 0,

but the corresponding sampled feedback

ut = −sgn(ykh)|ykh|b+ε, t ∈ [kh, (k + 1)h), k = 0, 1, 2, ...

is not globally stabilizing, no matter how small the sampling
period h > 0 is.



Example 2. Feedback Capability Under Sampling

Consider stochastic systems

dxt = [f(xt) + ut]dt + σdwt, t ≥ 0, x0 ∈ R1dxt = [f(xt) + ut]dt + σdwt, t ≥ 0, x0 ∈ R1dxt = [f(xt) + ut]dt + σdwt, t ≥ 0, x0 ∈ R1, (5)

where fff is locally Lipschitz, and {wt} is a standard
Brownian motion. Assume that there are two constants
R > 0 and δ > 0 such that

xf(x) ≥ |x|2+δ, δ > 0,∀|x| ≥ R.

Then, the stochastic system is not stabilizable by any
sampled-data feedback, and in fact,

E|xT |2 = ∞, ∀T > 0, x0 ∈ R.

whatever how small the sampling period h is (even if f is
known a priori).



An Impossibility Theorem

Consider the systems:

ẋt = f(xt) + ut, t ≥ 0, x0 ∈ R1ẋt = f(xt) + ut, t ≥ 0, x0 ∈ R1ẋt = f(xt) + ut, t ≥ 0, x0 ∈ R1, (6)

where the local Lipschitz function fff belongs to

GL , {f : |f(x)| ≤ L|x|+ c, ∀x ∈ R1}GL , {f : |f(x)| ≤ L|x|+ c, ∀x ∈ R1}GL , {f : |f(x)| ≤ L|x|+ c, ∀x ∈ R1}. (7)

Theorem
If Lh > 4.75Lh > 4.75Lh > 4.75, then the uncertain system class GL cannot be
globally stabilized by any sampled-data feedback.

(Xue and Guo, 2002; Ren, Cheng and Guo, 2014)



IV. Concluding Remarks)



Concluding Remarks

• All the impossibility theorems presented in this talk enjoy

universality in the sense that they are actually valid for any

larger class of uncertain systems and for any feedback laws.

• The main results indicate that the feedback capability

depends on both information uncertainty and structural

complexity, although our focus here is mainly placed on the

former. The sensitivity function is more relevant than the

range of unknown parameters.



Concluding Remarks(Cont’d)

• There are fundamental differences between continuous-time

and discrete-time (or sampled-data)feedbacks for uncertain

nonlinear systems in both results and analyses, where time

lag in feedback is an inevitable feature for the later.

Time-delay and time-varying systems may also be

investigated.

• Finally, the investigation of the maximum feedback

capability appears to be practically valuable, theoretically

fundamental and mathematically challenging. This lecture

only presents some preliminary results, and there is still a

long way to go towards a complete understanding.
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