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With the development network technology, distributed adaptive filtering
has attracted more and more attention:

Collaborative spectral sensing in cognitive radio systems.

Distributed noise cancelation.

Field monitoring.

Target localization in biological networks.

Fish schooling, bee swarming, and bird flight in mobile adaptive
networks.

· · · · · ·
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A fundamental problem in distributed adaptive filtering :

How to estimate or track an unknown signal process from distributed
noisy measurements in a cooperative manner?

There are basically two approaches: Centralized and Distributed
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Centralized processing

Drawbacks: Communication capability, energy consumption, vulnerability
in the fusion center.
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Distributed processing

Improve resilience to failure.

Privacy and secrecy considerations.

While each sensor is not capable of tracking the desired signal
process, the information interaction among the sensors may lead to
the desired behavior.
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Main strategies

There are three main strategies for distributed processing, namely,

Incremental strategies

Diffusion strategies

Consensus strategies
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Incremental strategies

Start from a given network topology and a cyclic trajectory that covers all
agents in the network, update the estimate one by one along the cyclic
trajectory.

θ̂k = θ̂1k → θ̂2k → · · · → θ̂nk = θ̂k+1
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Diffusion strategies

There are two types of diffusion strategies: Combine-then-Adapt (CTA)
and Adapt-then-Combine (ATC).

Combine: the weighted average of estimates
generated by the neighbors of a given sensor.
Adapt: Adaptation using the innovation at a
given sensor and other local information.
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Consensus strategies

There is no need to select beforehand a cyclic trajectory. All the sensors
reach a common value through local communications.

At every iteration k , all agents in the network
can run their consensus update simultaneously
by using iterates that are available from the
iteration k − 1 of their neighbors.
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Overview

Distributed adaptive filtering has been studied widely in recent
years:

C. G. Lopes and A. H. Sayed, in IEEE ICASSP, 2006.

A. H. Sayed and C. G. Lopes, IEICE Trans. FECCS, 2007.

F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, in IEEE SPAWC, 2007.

I. D. Schizas, G. Mateos and G. B. Giannakis, IEEE on ASSP, 2008.

I. D. Schizas, G. Mateos and G. B. Giannakis, IEEE TSP, 2009.

F. S. Cattivelli and A. H. Sayed, IEEE TSP, 2010.

M.A. Tinati, A. Rastegarnia, A. Khalili, 3rd Conference on WMMN, 2010.

A. Rastegarnia, M.A. Tinati, A. Khalili, IEEE ICCS, 2010.

A. H. Sayed, Proceedings of the IEEE, 2014.

H. Nosrati, M. Shamsi, etc., IEEE TSP, 2015.

. . .

Almost all require independency and/or stationarity conditions in the
theoretical analyses, which exclude applications to feedback systems.
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Basic theoretical problems

How to establish a theory on distributed adaptive filtering without
independency and stationarity assumptions?

What is the weakest possible information condition, under which the
distributed adaptive filtering algorithm can fulfil the estimation task,
in the natural case where any individual sensor cannot?

How far can we extend the existing results for single sensor to
distributed sensor networks?
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Single sensor case

For a single sensor whose signals are generated by a stochastic regression
model:

yk = θTk ϕk + vk , k ≥ 0.

where

yk ∈ R : scalar observation at time k

vk ∈ R : scalar noise at time k

ϕk ∈ Rm : regressor

θk ∈ Rm : an unknown signal process to be estimated

Remark: yk can also be regarded as being approximated or predicted by a
linear combination θTk ϕk , with the unknown θk to be estimated adaptively.
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LMS

The most commonly used least mean squares (LMS) is a type of steepest
descent algorithm that aims at minimizing the following mean square error
(MSE) recursively:

ek(θ) = E(yk −ϕT
k θ)2, k ≥ 0,

with the following standard form:

θ̂k+1 = θ̂k + µϕk [yk − (ϕk)T θ̂k ], k ≥ 0,

where µ ∈ (0, 1) is the adaptation gain.
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NLMS

For convenience of discussions, we consider the following normalized LMS:

θ̂k+1 = θ̂k + µ
ϕk

1+ ‖ ϕk ‖2
[yk − (ϕk)T θ̂k ], k ≥ 0,

where µ ∈ (0, 1) is the adaptation gain.

Remark: Similar treatments apply to the unnormalized LMS, save that a
general stochastic averaging theorem is established to deal with possible
unbounded regression signals.
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A brief overview

Most literature require independency and stationarity conditions, e.g.,

B. Widrow et al. (1976): independency

S. Haykin (1996): independency

O. Macchi (1995): M-dependency.

· · · · · ·

One exception is the work based on weak convergence where φ-mixing
condition is used but needs vanishing adaptation gains, see e.g.,

H. J. Kushner (1984)

In fact, how to relax these restrictions has been a long standing
problem in adaptive filtering theory.
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In the 1990s, a general theory was established by introducing a
”conditional excitation condition” which requires neither
independency/stationarity nor vanishing adaptation gains, and is
applicable to feedback systems:

L. Guo (SICON, 1994): Stability of NLMS, RLS and KF.

L. Guo and L. Ljung (IEEE TAC, 1995): Performance of NLMS, RLS,
KF and beyond.

L. Guo,L. Ljung and G.J.Wang (IEEE TAC, 1997): Necessary and
sufficient condition for stability of LMS.

These are the basis to our investigation of distributed adaptive filtering.
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Error equation

Let us denote
θ̃k = θ̂k − θk ,
θk = θk−1 + γωk ,

then the estimation error equation can be written as

θ̃k+1 =

(
Im − µ

ϕkϕ
T
k

1 + ‖ϕk‖2

)
θ̃k + µ

ϕkvk
1 + ‖ϕk‖2

− γωk , k ≥ 0, µ ∈ (0, 1).

Remark:
The product of random matrices

∏(
Im − µ

ϕkϕ
T
k

1+‖ϕk‖2
)

plays a key role.
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Definitions

• A sequence {I − Ak , k ≥ 0} is called Lp-exponentially stable if
A = {Ak , k ≥ 0} belongs to the following family

Sp(λ) =

{
A :

∥∥∥∥ k∏
j=i+1

(I − Aj)

∥∥∥∥
Lp

≤ Nλk−i ,∀k ≥ i ≥ 0,∃N > 0

}
,

where ‖ · ‖Lp= {E ‖ · ‖p}
1
p and λ ∈ [0, 1).

• For a scalar sequence a = {ak , k ≥ 0} with ak ∈ [0, 1] we denote

S0(λ) =

{
a : E

k∏
j=i+1

(1− aj) ≤ Nλk−i , ∀k ≥ i ≥ 0,∃N > 0

}
.

Remark: If a scalar random sequence in [0, 1] is uniformly bounded from
below by a positive constant, then obviously it belongs to the family S0(λ).
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Conditional excitation condition

There exists an integer h > 0 such that {λk , k ≥ 0} ∈ S0(λ) for some
λ ∈ (0, 1), where λk is defined by

λk
4
= λmin

{
E
[

1

h + 1

k+h∑
j=k+1

ϕj(ϕj)
T

1 + ‖ϕj
‖2
∣∣∣Fk

]}
.

and where Fk = σ{ϕj ,ωj , vj−1, j ≤ k}.

Remark: This condition allows more interesting stochastic cases where no
lower bound to λk exists. It can be verified for the following typical
situations:

φ-mixing processes.

Signals generated by linear and non-linear state space stochastic
models.

Time varying linear stochastic models.
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Stability for single LMS

Theorem.
Assume that the conditional excitation condition is satisfied. Then for any
µ ∈ (0, 1) and any p ≥ 1,{

Im − µ
ϕkϕ

T
k

1 + ‖ϕk‖2

}
is Lp-exponentially stable.

Question : Can we generalize this result to sensor network case?
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Sensor network

For a network with n sensors,
consider the signal model at each
sensor i :

y ik = (ϕi
k)Tθk + v ik , k ≥ 0.

where

y ik ∈ R : scalar observation of sensor i at time k

v ik ∈ R : scalar noise of sensor i at time k

ϕi
k ∈ Rm : regressor of sensor i

θk ∈ Rm : an unknown signal process to be estimated
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Centralized adaptive filtering

A natural centralized algorithm may be deduced by minimizing the
following MSE recursively

ecenk (θ) = E
{

1

n

n∑
i=1

[y ik − (ϕi
k)Tθ]2

}
, k ≥ 0.
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Centralized adaptive filtering

Centralized NLMS algorithm

θ̂cenk+1 = θ̂cenk + µ

{
1

n

n∑
i=1

ϕi
k

1+ ‖ ϕi
k ‖2

[y ik − (ϕi
k)T θ̂cenk ]

}
where µ ∈ (0, 1) is the adaptation gain.

Denote θ̃cenk = θ̂cenk − θk , we have the error equation

θ̃cenk+1 =

{
Im −

µ

n

n∑
i=1

ϕi
k(ϕi

k)τ

1+ ‖ ϕi
k ‖2

}
θ̃cenk +

µ

n

n∑
i=1

ϕi
kv

i
k

1+ ‖ ϕi
k ‖2

− γωk+1,

Lei GUO, Siyu XIE (AMSS) Distributed Adaptive Filtering NecSys’16 30 / 56



Cooperative information condition

There exists an integer h > 0 such that {λk , k ≥ 0} ∈ S0(λ) for some
λ ∈ (0, 1), where λk is defined by

λk
4
= λmin

{
E
[

1

n(h + 1)

n∑
i=1

k+h∑
j=k+1

ϕi
j(ϕ

i
j)
T

1 + ‖ϕi
j‖2
∣∣∣Fk

]}
.

and where Fk = σ{ϕi
j ,ωj , v

i
j−1, j ≤ k, i = 1, . . . , n}.

Remark: This condition is a natural extension of the single sensor case

λk
4
= λmin

{
E
[

1

h + 1

k+h∑
j=k+1

ϕj(ϕj)
T

1 + ‖ϕj‖2
∣∣∣Fk

]}
.

where n is taken to be 1.
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Stability of centralized LMS

Theorem:
Consider the centralized NLMS algorithm. If the cooperative information
condition holds, then for any µ ∈ (0, 1) and any p ≥ 1,{

Im −
µ

n

n∑
i=1

ϕi
k(ϕi

k)τ

1+ ‖ ϕi
k ‖2

}
is Lp − exponentially stable.

Question : Can we establish the same result for distributed adaptive
filtering under the same cooperative information condition as in the
centralized case?

Lei GUO, Siyu XIE (AMSS) Distributed Adaptive Filtering NecSys’16 32 / 56



Distributed adaptive filtering

The network connections are modeled as a weighted undirected graph
G = (V, E ,A). The adjacency matrix A = {aij} reflects the interaction
strength among neighboring nodes and the set of neighbors of each sensor
k is denoted as

Nk = {l ∈ V|(k , l) ∈ E}.
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Distributed adaptive filtering

Each sensor i tries to minimize the following performance index composed
of local information:

e ik(θ) = E
{[

y ik − (ϕi
k)Tθ√

1+ ‖ ϕi
k ‖2

]2
+ ν

∑
l∈Ni

ali (θ̂
l
k − θ)2

}
,

k ≥ 0, i = 1, . . . , n.

Remark: The first part corresponds to the usual NLMS, while the second
part tries to minimize the weighted distance between the estimate of the
agent i and its neighboring estimates.
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Distributed adaptive filtering

The consensus type distributed NLMS algorithm :

θ̂ik+1 = θ̂ik + µ

{
ϕi

k

1+ ‖ ϕi
k ‖2

[y ik − (ϕi
k)T θ̂ik ]︸ ︷︷ ︸

error correction term

−ν
∑
l∈Ni

ali (θ̂
i
k − θ̂lk)︸ ︷︷ ︸

consensus term

}
, k ≥ 0, i = 1, . . . , n.

where µ ∈ (0, 1), ν ∈ (0, 1) are adaptation gains.
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Error equation: vector form

Θ̃k+1 ={Imn − µ[Fk + ν(L ⊗ Im)]}Θ̃k + µLkVk − γΩk+1

=(Imn − µGk)Θ̃k + µLkVk − γΩk+1.

where
Θ̃k

4
= col{θ̃1k , . . . , θ̃nk}, where θ̃ik = θ̂ik − θk ,

Gk
4
= Fk + ν(L ⊗ Im), Fk

4
= LkΦ

T
k ,

Lk
4
= diag

{
ϕ1

k

1+ ‖ ϕ1
k ‖2

, . . . ,
ϕn

k

1+ ‖ ϕn
k ‖2

}
,

Φk
4
= diag{ϕ1

k , . . . ,ϕ
n
k},

Vk
4
= col{v1

k , . . . , v
n
k }, Ωk+1

4
= col{ωk+1, . . . ,ωk+1︸ ︷︷ ︸

n

}.
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Conditions on topology and information

Condition 1: The graph G is connected.

Condition 2 (Cooperative Information Condition): There exists an
integer h > 0 such that {λk , k ≥ 0} ∈ S0(λ) for some λ ∈ (0, 1),
where λk is defined by

λk
4
= λmin

{
E
[

1

n(h + 1)

n∑
i=1

k+h∑
j=k+1

ϕi
j(ϕ

i
j)
T

1 + ‖ϕi
j‖2
∣∣∣Fk

]}
.

and where Fk = σ{ϕi
j ,ωj , v

i
j−1, j ≤ k , i = 1, . . . , n}.
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A key lemma

Lemma 1: For any µ ∈ (0, 13), ν ∈ (0, 1), suppose that the graph G is
connected and the cooperative information condition is satisfied, then
ρk ∈ S0(ρ), where

ρk
4
= λmin

{
E
[

1

1 + h

k+h∑
j=k+1

µGj

∣∣∣Fk

]}
,

and ρ = λε, ε = h
h2+2h+1

· δm+1µν, δm+1 is the m + 1-th eigenvalue of
L ⊗ Im.

Remark: Transform the stochastic property of ”summation” to that of
”product” of the random matrices under cooperation.
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Stability result

Theorem 1: Suppose that the graph G is connected and the cooperative
information condition is satisfied. Then for any
µ ∈ (0, 13), ν ∈ (0, 1), p ≥ 1, we have

{Imn − µGk , k ≥ 1} is Lp − exponentially stable.

Furthermore, if for some p ≥ 1 and β > 1,

σp
4
= sup

k
‖ξk logβ(e + ξk)‖Lp <∞, ‖Θ̃0‖Lp <∞

hold where ξk = ‖Vk‖+ ‖Ωk+1‖, then we have

lim sup
k→∞

‖Θ̃k‖Lp ≤ c[σp log(e + σ−1p )],

where c is a positive constant.
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Necessity result

Theorem 2: Let {ϕi
k} be φ-mixing processes and suppose that the graph

G is connected. Then for any µ ∈ (0, 13), ν ∈ (0, 1),

{Imn − µGk , k ≥ 1} is Lp-exponentially stable (p ≥ 1) if and only if the
cooperative information condition is satisfied.
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Further investigation

A random sequence x = {xk} ∈ Mp(p ≥ 1), if there exists a constant C x
p

depending only on p and the distribution of {xk} such that for any k ≥ 0,∥∥∥∥ k+h∑
i=k+1

xi

∥∥∥∥
Lp

≤ C x
p h

1
2 , ∀h ≥ 1.

Condition 3: For some p ≥ 1, the initial estimation error is bounded,
i.e. ‖Θ̃0‖L2p <∞, . Furthermore, let {LkVk} ∈ M2p and
{Ωk} ∈ M2p.

Remark:
This condition simply implies that both the noises process and parameter
variations are weakly dependent in a certain sense.
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Further result

Theorem . Assume that Conditions 1-3 are satisfied, then for any k ≥ 0
and µ ∈ (0, 13), ν ∈ (0, 1), we have

‖Θ̃k+1‖Lp = O

(
√
µ+

γ
√
µ

+ (1− αµ)k+1

)
,

where α ∈ (0, 1) is a constant.

Remark:
The upper bound roughly indicates the tradeoff between noise sensitivity
and tracking ability. More accurate results will be given below.
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Performance approximation

Theorem 3: Under some further mild conditions on the observation noise
and parameter variation, we have for any k ≥ 1, µ ∈ (0, 13), ν ∈ (0, 1)

‖E[Θ̃k+1Θ̃
T
k+1]− Π̂k+1‖ ≤ c δ̄(µ)

[
µ+

γ2

µ
+ (1− αµ)k+1

]
,

where c > 0, α ∈ (0, 1) are constants and δ̄(µ) tends to zero as µ→ 0 and
Π̂k+1 is the main term of the estimation error covariance, which can be
calculated recursively by

Π̂k+1 =(Imn − µE[Gk ])Π̂k(Imn − µE[Gk ])T

+ µ2E[LkVkVT
k LT

k ] + γ2E[Ωk+1Ω
T
k+1].
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Simplifications

Let the regressors be (wide-sense) stationary, and let us denote

F = E[Fk ] = diag{F1, · · · ,Fn}, G = F + ν(L ⊗ Im),

T = E[Tk ] = E[LkVkVT
k LT

k ], Qω = Qω(k + 1) = E[Ωk+1Ω
T
k+1].

Then the ”main term” can be simplified as

Πk = µR̄v +
γ2

µ
R̄ω + O

(
δ̄(µ)

[
µ+

γ2

µ

])
+ o(1),

where “o(1)” tends to zero with exponential rate as k →∞, and

R̄v =

∫ ∞
0

e−GtTe−Gtdt, R̄ω =

∫ ∞
0

e−GtQωe
−Gtdt.
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Performance ”optimization”

Note that limµ→0δ̄(µ) = 0. As a result, we have for all small µ and large k

Πk ∼ µR̄v +
γ2

µ
R̄ω,

which indicates that µ should be proportional to γ, and by minimizing the
right-hand-side, we get the ”optimal” choice µ∗ = γ

√
tr R̄ω/tr R̄v with the

corresponding minimum value:

n∑
i=1

E‖θ̃ik‖2 ∼ 2γ
√
tr R̄ω · tr R̄v .
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Simulation examples

Example 1. We construct an example to illustrate the cooperative
property of the distributed adaptive filtering :

No individual sensor can estimate the parameters by itself, but the
whole distributed sensor network can.

Let us take n = 3 with a connected graph. We will track an unknown
3-dimensional signal θk . Let the variation be ωk ∼ N(0, 0.1, 3, 1)
(Gaussian distribution), the observation model
y ik = (ϕi

k)Tθk + v ik(i = 1, 2, 3) with noises v ik ∼ N(0, 0.1).
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Simulation results

Let ϕi
k(i = 1, 2, 3) be generated by{

xik = Aix
i
k−1 + Biξ

i
k ,

ϕi
k = Cix

i
k ,

where ξik ∼ U(−1, 1) (uniform distribution), and

A1 = A3 =

1/2 0 0
0 1/3 0
0 0 1/5

 ,A2 =

4/5 0 0
4/5 0 0
4/5 0 0

 ,

B1 = (1, 0, 0)T ,B2 = (1, 0, 0)T ,B3 = (1, 0, 0)T ,

C1 =

1 0 0
0 0 0
0 0 0

 ,C2 =

0 0 0
1 0 0
0 0 0

 ,C3 =

0 0 0
0 1 0
0 0 1

 .
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Simulation results
Let x10 = x20 = x30 = (1, 1, 1)T ,θ0 = (1, 1, 1)T , θ̂i0 = (0, 0, 0)T , µ = 0.3, ν =
0.8, plot the tracking error covariances.

Figure: Tracking error covariances with γ = 0
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Simulation results

Figure: Tracking error covariances with γ = 1
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Simulation results

Example 2. We construct another example to show that the full rank
property 3 of the matrix is necessary. We assume that Ai ,Bi (i = 1, 2, 3)
remain the same but with

C1 =

1 0 0
0 0 0
0 0 0

 ,C2 =

1 0 0
0 0 0
0 0 0

 ,C3 =

0 0 0
1 0 0
0 0 0

 .

It is not difficult to verify that the related matrix in the cooperative
information condition has rank 2 (not 3).
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Simulation results

We select the same initial states as in the first example.

Figure: Tracking error covariances of the consensus LMS algorithm
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Conclusions

We have presented a weakest possible cooperative information
condition, under which the distributed adaptive filtering algorithm can
fulfil the estimation task, even when any individual sensor cannot.
This gives a rigorous justification for the cooperation property of
distributed filtering.

This general cooperative information condition does not exclude
applications of the distributed filtering theory to stochastic feedback
systems, a desirable property that has rarely been achieved before.
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Conclusions

The cooperative information condition is also necessary for the
stability of distributed adaptive filtering algorithm, for the commonly
used φ-mixing processes.

We have also shown that the actual tracking error covariance matrix
can be well approximated by a simple linear and deterministic
difference matrix equation which can be easily evaluated, analyzed,
and even “optimized”.
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Further problems

To extend the stability theorems to other distributed strategies and
other adaptive filtering algorithms (e.g., RLS, KF based filters).

To combine distributed adaptive filtering with distributed adaptive
control problems.

To expand the scope of applications to more complex dynamical
systems.

Lei GUO, Siyu XIE (AMSS) Distributed Adaptive Filtering NecSys’16 55 / 56



THANK YOU!

Lei GUO, Siyu XIE (AMSS) Distributed Adaptive Filtering NecSys’16 56 / 56


	Background
	Motivation
	Centralized vs. distributed
	Existing literature
	Basic problems

	Main results
	Review of single sensor case
	New results for sensor network
	Simulation results

	Concluding remarks

